Abstract:
Disclosed is a urea plant comprising an additional reactor. With reference to the regular components of a urea plant, including a recovery section and a high pressure carbamate condenser, the additional reactor is positioned between the recovery section and the high pressure carbamate condenser. The invention also relates to a process for the synthesis of urea, comprising an additional reaction step converting, at an earlier stage than conventional, recovered carbamate into urea.
Abstract:
A reformer furnace (1), comprising: at least one triple conduit assembly (200), including a flue gas conduit (220) enclosing a reaction conduit (240) enclosing a product gas conduit (260), wherein: the reaction conduit (240) extends between a lower end (244) defining a reaction gas inlet (245), and a closed upper end (242); the product gas conduit (260) extends between an upper end (262) defining a product gas inlet (263), and a lower end (264) defining a product gas outlet (265); the flue gas conduit (220) extends between an upper end (222) defining a flue gas inlet (223), and a lower end (224) defining a flue gas outlet (225); and an annulus (250) between the reaction conduit (240) and the product gas conduit (260) comprises a catalyst (252); a combustion chamber (100) that encloses an approximate upper half (226, 246, 266) of the at least one triple conduit assembly (200) while an approximate lower half (228, 248, 268) thereof resides outside of and below the combustion chamber, and that includes at least one burner (110), disposed inside of the combustion chamber and outside of the flue gas conduit (220), such that the approximate upper half (226) of the flue gas conduit substantially shields the reaction conduit (240) from direct burner flame heat radiation and impingement.
Abstract:
Disclosed is a process for the direct alkylation of aromatic compounds with alkanes. To this end a judicious catalyst combination is provided. The composition comprises palladium as a catalytically active metal, and zinc as a promoter, or a metal such as tin having a comparable promoting action. The metals are contained in a zeolite support, or a similar support of a metal organic framework type or a silico alumino phosphate type.
Abstract:
Disclosed is a process for the concurrent production of hydrogen and sulphur from a H2S-containing gas stream, with reduced, and preferably zero, emissions. The method comprises the catalytic oxidative cracking of H2S so as to form H2 and S2. Preferably, the oxidation is conducted using oxygen-enriched air, preferably pure oxygen. The process is conducted in a reaction chamber comprising a bifunctional catalyst material, so as to favor both the partial oxidation of H2S and the dissociation thereof.
Abstract:
The present invention relates to a method for hydrogen production and to a method of hydrogen and/or carbon dioxide production from syngas. The method comprises the steps of: (i) providing a gas stream comprising hydrogen and carbon monoxide, (ii) separating at least part of hydrogen from the stream yielding a hydrogen-depleted stream, (iii) subjecting the hydrogen-depleted stream to a water-gas shift reaction, and (iv) separating hydrogen from the stream resulting from step (iii). The method according to the invention improves the conversion of carbon monoxide in the water gas shift reaction and allows to increase the hydrogen production by 10-15% and to increase the overall energy efficiency of the system by 5-7%. The invention further relates to a plant for hydrogen and/or carbon dioxide production suitable for the method of the invention.
Abstract:
Alcohols are dehydrogenated to form ketones, using a catalyst containing liquid indium dispersed and retained in the pore structure of a porous carrier. The catalyst is prepared by mixing powdered In2O3 and MgO, firing the mixture at 900 DEG -1150 DEG C. for 5-20 hours, and activating the catalyst by passing through a reducing gas.
Abstract:
A composite for the absorption of energy consists of fibers having a breaking length of at least 80 km and an elongation at break of at least 2 %, in particular fibers of a linear polyethylene of ultrahigh molecular weight and carbon fibers or glass fibers, embedded in a matrix. The first fibers are preferably arranged at obtuse angles (+/- (45 ¤& to 90 ¤& )) and the carbon fibers or glass fibers are preferably arranged at acute angles (0 ¤& to +/- 30 ¤& ) to the direction of pressure application in the matrix. The composites may be designed in particular in the form of tubes or corrugated plates.