Abstract:
A structure where there are self-contained subframes/slots with smaller TTIs within the subframes/slots is provided to address the issues in MMW scheduling. In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may transmit downlink information to at least one UE using a plurality of downlink TTIs within a subframe/slot. The apparatus may receive uplink information from the at least one UE using at least one uplink region within the subframe/slot. In another aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may receive downlink information from a base station using at least one downlink TTI within a subframe/slot. The subframe/slot may include a plurality of downlink TTIs and at least one uplink region. The apparatus may transmit uplink information to the base station using the at least one uplink region within the subframe/slot.
Abstract:
Methods, systems, and devices for wireless communication are described. The method may include transmitting a first synchronization signal in a set of beam directions during a first symbol period of a synchronization subframe and transmitting a second synchronization signal in another set of beam directions during a second symbol period of the synchronization subframe. The second set of beam directions may be spatially interleaved with the first set of beam directions. Additionally, the method may include monitoring a first and second set of beam directions during a first and second symbol period of a random access subframe, respectively. Additionally, the method may include receiving, from a base station, first and second synchronization signals in a synchronization subframe, decoding the first synchronization signal, and transmitting an access request based at least in part on the decoded first synchronization signal.
Abstract:
A user equipment (UE) may transmit a random access message to a wireless node using multiple symbols. The random access message may include repetitions of a random access sequence weighted by a spreading code. For example, a random access sequence may be weighted using different elements of the spreading code, where a first repetition may be weighted with a first element and a second repetition may be weighted using a second element. The weighted random access signals may be spread over multiple symbols and transmitted to the wireless node as the random access message. In some cases, a spreading code may include values of one and negative one, and may correspond to a number of symbols used to transmit the random access message. The spreading code may further indicate a downlink transmission beam identification (ID) associated with desirable reception qualities at the UE.
Abstract:
Various aspects of the disclosure relate to communicating random access information and uplink control information. In some aspects, a user equipment (UE) or other suitable apparatus transmits physical uplink control channel (PUCCH) information concurrently with random access channel (RACH) information transmitted by another UE or other apparatus. For example, the RACH access information and the PUCCH information may be frequency division multiplexed orthogonal tones. The disclosure relates in some aspects to using downlink-uplink (DL-UL) channel reciprocity to determine symbol and/or tone locations. For example, a base station or other suitable apparatus may initially sweep across different directions in different time slots to transmit signals during a synchronization sub-frame. A UE or other suitable apparatus can then find an appropriate RACH symbol from its best synchronization beam index and transmit PUCCH information in those symbols.
Abstract:
Described herein are methods, systems, and apparatus for jointly estimating channel and phase noise in a control symbol. In one example, a method for wireless communication is described that includes inserting a control tone at a first periodicity in a first subcarrier of a control symbol and inserting a pilot tone at a second periodicity in a second subcarrier of the control symbol, the pilot tone being offset from the control tone in the control symbol. The method also includes transmitting the control symbol. In another example, a method for wireless communication is described that includes receiving a control symbol comprising a control tone at a first periodicity, and a pilot tone at a second periodicity, the pilot tone being offset from the control tone in the control symbol. The method also includes performing a phase noise estimation and a channel estimation from the pilot tone.
Abstract:
Methods, systems, and devices are described for wireless communication. A serving base station may transmit a signal to user equipment (UE) using directional beamforming. The UE may receive the transmission from the serving base station and may also receive a signal from a neighbor base station using directional beamforming. The UE may then generate an interference report based on the two transmissions, and send report to the serving base station. The serving base station may generate a local interference graph based on the interference report, exchange interference information with the neighbor base station(s), and schedule subsequent transmissions to the UE based on the exchanged interference information. In some cases, the scheduling is based on distributed information exchange and prioritization. In other cases, the scheduling may be managed by a centralized controller.
Abstract:
Method, systems, and apparatuses are described for discovery operations in a millimeter wave wireless communication system. A first base station of the millimeter wave wireless communication system may determine a timing parameter and a propagation parameter associated with a second base station of the millimeter wave wireless communication system. The first base station may perform a discovery procedure with the second base station based at least in part on the timing parameter and the propagation parameter. At least a portion of the discovery procedure may be performed wirelessly via the millimeter wave wireless communication system. The first base station may establish a backhaul communication link with the second base station based on the discovery procedure.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a network node may receive a first message associated with initiating a random access channel (RACH) procedure. The network node may communicate one or more second messages associated with completing the RACH procedure, wherein a type of the RACH procedure is associated with a type of analog to digital converter used for communication. Numerous other aspects are described.
Abstract:
A repeater BWP switching schedule is provided for a repeater that is responsive to a user equipment BWP switching schedule. Should the repeater support a plurality of active user equipments, the user equipment BWP switching schedule is a superset of the BWP switching schedule for each individual user equipment. The repeater BWP switching schedule may thus be more granular than the UE BWP switching schedule.
Abstract:
Methods, systems, and devices for wireless communications are described. The described techniques relate to improved methods, systems, devices, and apparatuses that support random-access occasion (RO) selection for reduced-capability (RedCap) user equipment (UEs). A RedCap UE operating in a half-duplex mode may use the techniques described herein to efficiently select an RO in which to transmit a random-access preamble based on a duration between a latest received downlink transmission and the RO satisfying a threshold duration. The UE may receive system information mapping a set of synchronization signal blocks (SSBs) to a set of ROs. The UE may then select an RO from the set of ROs in which to transmit the random-access preamble such that the UE has sufficient time to transition from a receive mode to a transmit mode to transmit the random-access preamble.