Abstract:
Systems, methods, and computer readable storage media communicate with a wireless device within a dense wireless environment. In one aspect, a method includes determining whether a wireless device is subject to interference, adjusting a transmission attribute based on the determining, and transmitting a message to the wireless device based on the adjusted transmission attribute. In some aspects, adjusting a transmission attribute may include selecting one or more of time division multiplexing or frequency division multiplexing when communicating with the wireless device. In some aspects, particular time periods and/or particular frequency bands may be selected for communication with the device depending on whether the device is subject to interference.
Abstract:
Access points communicate via a discovery channel. For example, access points may transmit at a higher transmit power and at a lower rate on the discovery channel than on operating channels. In this way, the radio frequency range of the discovery channel is longer than the range of any of the operating channels. Consequently, a particular access point can communicate with and thereby account for other access points that the particular access point might not hear via an operating channel.
Abstract:
An explicit indication is provided regarding whether information was subjected to interference during transmission. For example, a receiver can monitor received packets and determine whether any of data units in a given received packet were subjected to interference during transmission. If so, the receiver can send an indication to the transmitter to inform the transmitter of the interference. This indication enables the transmitter to distinguish between packet loss that occurred as a result of channel fade and packet loss that occurred as a result of interference. Consequently, the transmitter is able to invoke different actions depending on whether the packet loss is due to channel fade or interference
Abstract:
Systems and methods for formatting frames in neighborhood aware networks are described herein. One aspect of the subject matter described in the disclosure provides a method of communicating in a wireless neighborhood aware network (NAN). The method includes determining at least one connection setup information element indicating one or more connection parameters of the NAN. The method further includes determining at least one service identifier of the NAN. The method further includes generating a public action discovery frame comprising the at least one connection setup information element and the at least one service identifier. The method further includes transmitting, at a wireless device, the public action discovery frame.
Abstract:
Systems and methods for wireless communication are disclosed. In one aspect, a method includes generating, by an apparatus, a first message comprising a first indicator indicating a number of beacon intervals that each have a window during which one or more devices are permitted to communicate with the apparatus; and transmitting, by the apparatus, the first message.
Abstract:
Methods and stations for wireless communication are described herein. In some aspects, the station may include a processing circuit configured to process a first signal transmitted to the station, the first signal indicating a target wake up time when an activation signal is expected to be received. The station may further include a wake-up circuit configured to transition a first receiver to an awake state based on the indicated target wake up time. The first receiver is configured to receive the activation signal at the indicated target wake up time. The station may further include a second receiver configured to transition to an awake state based on the first receiver receiving the activation signal and receive a second signal while in the awake state.
Abstract:
Systems, methods, and devices for communicating data in a wireless communications network are described herein. In some aspects, a relay is configured to receive at least one first parameter advertised by a first potential parent relay and at least one second parameter advertised by a second potential parent relay. The relay may be further configured to select the first potential parent relay or the second potential parent relay to relay one or more packets based on the at least one first parameter advertised by the first potential parent relay and the at least one second parameter advertised by the second potential parent relay.
Abstract:
Systems, methods, and devices for compressing block acknowledgment (ACK) frames/packets are described herein. In some aspects, a method of communicating in a wireless network includes generating a block acknowledgment frame comprising a plurality of fields in the following order: a block acknowledgment identifier field including an identifier of the block acknowledgment frame; a starting sequence control field including at least one of a sequence number and a function of a sequence number of a data unit for which the block acknowledgement frame is sent; and a block acknowledgement bitmap field indicating a received status of a number of data units. The method further includes wirelessly transmitting the block acknowledgment frame.
Abstract:
Systems, methods, and devices for communicating data in a wireless communications network are described herein. In some aspects, a relay provides relay services for network communication between a first station and a second station. In one aspect, the relay may receive data packets sent to the second station by the first station, and retransmit the data packets if it determines that the second station has not acknowledged the data packet. In one other aspect, the first station may be configured to transmit a relay-able acknowledgement that includes a sequence number identifying data being acknowledged. The relay may be configured to receive a transmission of a first relay-able acknowledgement by the first station and retransmit a second relay-able acknowledgement if it determines the second station did not receive the first relay-able acknowledgement sent by the first station. In some aspects, the second station is an access point.
Abstract:
Methods, devices, and systems for retransmitting Media Access Control (MAC) protocol data units (MPDUs) in a multi-user multiple-input and multiple-output (MU MIMO) communication system are disclosed. Concurrent data streams within a first transmission window are transmitted. Each concurrent data stream is associated with a different recipient and includes an equal number of MPDUs. An indication of a retransmission subset of the MPDUs to be retransmitted for each concurrent data stream may be obtained if errors are present. The retransmission subset for each concurrent data stream is retransmitted within a second transmission window. A length of the second transmission window is as long as the longest of the retransmission subsets of the concurrent data streams. One or more new MPDUs may be added to the concurrent data streams in the second transmission window so that each concurrent data stream in the second transmission window carries a same number of MPDUs.