Abstract:
A container (1) for releasing a chemical additive (7) in a fluid material selected from a lubricant or hydraulic fluid composition comprises a fluid material-impermeable casing (3) having a hollow interior and an additive composition (7) comprising at least one fluid material-soluble additive. The additive (7) is held within the container (1) by a least one fluid material-permeable element (11) provided at or near an opening (13) in the casing (1) and is effective to provide for release of additive(s) (7) into the fluid material. Methods of releasing additives (7) into fluid material are also provided.
Abstract:
A container (1) for releasing a chemical additive (7) in a fluid material selected from a lubricant or hydraulic fluid composition comprises a fluid material-impermeable casing (3) having a hollow interior and an additive composition (7) comprising at least one fluid material-soluble additive. The additive (7) is held within the container (1) by a least one fluid material-permeable element (11) provided at or near an opening (13) in the casing (1) and is effective to provide for release of additive(s) (7) into the fluid material. Methods of releasing additives (7) into fluid material are also provided.
Abstract:
A fluid purifying apparatus that includes a manifold that includes a first branch and a second branch, a first check valve coupled to the first branch of the manifold, and a purifier unit that includes a first end and a second end, wherein the first end is coupled to the second branch of the manifold. Also, a fluid purifying apparatus that includes a vessel that includes a first interior compartment for containing a purifier material and a second interior compartment for containment of a fluid containing impurities, wherein the first interior compartment is separated from the second interior compartment by a fluid permeable support, and a rupturable seal.
Abstract:
A device and method for increasing the mass transport rate of a chemical or electrochemical process at the solid and fluid interface in a fluid cell. The device includes a membrane in close contact with surface of the work piece, to separate the process cell into two chambers, so that fluid velocity at the work piece is controlled separately from the main cell flow. Thus the diffusion boundary layer is controlled and minimized by the rate that fluid is withdrawn from the work piece chamber.
Abstract:
A fluid purifying apparatus that includes a manifold that includes a first branch and a second branch, a first check valve coupled to the first branch of the manifold, and a purifier unit that includes a first end and a second end, wherein the first end is coupled to the second branch of the manifold. Also, a fluid purifying apparatus that includes a vessel that includes a first interior compartment for containing a purifier material and a second interior compartment for containment of a fluid containing impurities, wherein the first interior compartment is separated from the second interior compartment by a fluid permeable support, and a rupturable seal.
Abstract:
A container (1) for releasing a chemical additive (7) in a fluid material selected from a lubricant or hydraulic fluid composition comprises a fluid material-impermeable casing (3) having a hollow interior and an additive composition (7) comprising at least one fluid material-soluble additive. The additive (7) is held within the container (1) by a least one fluid material-permeable element (11) provided at or near an opening (13) in the casing (1) and is effective to provide for release of additive(s) (7) into the fluid material. Methods of releasing additives (7) into fluid material are also provided.
Abstract:
With a method or a device for producing 1,2-dichloroethane or ethylene (di)chloride (EDC) with the use of a circulating reaction medium and a catalyst, whereby ethylene and chlorine are supplied to the reaction medium, the goal is to permit the catalytic chlorination of ethylene in a manner that is particularly gentle to the product.This is achieved in terms of the method and by other means in that the ethylene or chlorine gas are introduced into the reaction medium by means of microporous gas diffuser elements for producing gas bubbles with a diameter of 0.3 to 3 mm.
Abstract:
A fluid purifying apparatus that includes a manifold that includes a first branch and a second branch, a first check valve coupled to the first branch of the manifold, and a purifier unit that includes a first end and a second end, wherein the first end is coupled to the second branch of the manifold. Also, a fluid purifying apparatus that includes a vessel that includes a first interior compartment for containing a purifier material and a second interior compartment for containment of a fluid containing impurities, wherein the first interior compartment is separated from the second interior compartment by a fluid permeable support, and a rupturable seal.
Abstract:
The present invention relates to a compound of the LaMO3 type, M being aluminum, gallium or indium, in the form of a powder or in sintered form, its process of preparation and its use as an oxygen conductor. The compound in powder form is capable of achieving, by pressureless sintering, a density of at least 93% of the theoretical density and of giving a sintered compound substantially free of any electrically active secondary phase of the grain boundaries. The compound in powder form is obtained by the reaction of the salts of lanthanum and of the element M with a base, and then the separation and calcining of the precipitate obtained. It may also be obtained by mixing, in a liquid medium, salts of lanthanum, and of the element M and, optionally, of a base, and then spray-drying and calcining the precipitate obtained. The sintered compound may be used in any application requiring an oxygen-conducting material in oxide form, such as solid-oxide fuel cells.