Abstract:
A method of fluid sealing a workpiece is provided. The method includes placing a workpiece on a ring, engaging at least one engagement feature of the ring with at least one retaining feature defined by the member and flexing the member to provide a force to the at least one engagement feature to cause the ring to form a barrier to fluid entry with the workpiece.
Abstract:
A method and apparatus for retaining a workpiece against a workpiece holder are described. A flexible member can be used to provide a substantially uniform force to securely retain the workpiece, which can allow the workpiece to be consistently positioned in a process module. In one detailed embodiment, a barrier to fluid entry is formed between the workpiece and a ring for retaining the workpiece against a workpiece holder. This provides a reliable seal during fluid processing to prevent fluid from reaching the underside of a workpiece. In various embodiments, the workpiece holder can be used to align a workpiece in a process module or to hold one or more workpieces in a configuration that allows for higher throughput.
Abstract:
A method and apparatus for retaining a workpiece against a workpiece holder are described. A flexible member can be used to provide a substantially uniform force to securely retain the workpiece, which can allow the workpiece to be consistently positioned in a process module. In one detailed embodiment, a barrier to fluid entry is formed between the workpiece and a ring for retaining the workpiece against a workpiece holder. This provides a reliable seal during fluid processing to prevent fluid from reaching the underside of a workpiece. In various embodiments, the workpiece holder can be used to align a workpiece in a process module or to hold one or more workpieces in a configuration that allows for higher throughput.
Abstract:
A workpiece holder for fluid processing a workpiece including a transportable frame, a flexible member connected to the frame and defining at least one retaining feature, and a ring comprising at least one engagement feature engageable with the at least one retaining feature of the flexible member, wherein the flexible member is flexed to provide a force to the at least one engagement feature to cause the ring to form a barrier to fluid entry with the workpiece.
Abstract:
A method and apparatus for fluid sealing a workpiece retained by a workpiece holder are described. A pressure differential can be formed across a fluid seal to counteract fluid attempting to penetrate the fluid seal, which can contaminate the underside of the workpiece. The apparatus can include a ring forming a barrier to fluid entry with the workpiece and a source providing pressure to form the pressure differential. The pressure or the pressure differential can counteract hydroscopic fluid pressure or hydrostatic fluid pressure that is acting to force fluid through the barrier between the ring and the workpiece.
Abstract:
A method and apparatus for fluid processing a workpiece are described. A gas can be used to agitate a fluid to improve cleaning and/or rinsing of a workpiece surface. The gas can reduce surface tension of the fluid to promote improved contact of the fluid with a surface of the workpiece. The surface of the workpiece can be dried by flowing gas along a portion of the workpiece surface during or after draining of the fluid.
Abstract:
A method of fluid sealing a workpiece is provided. The method includes providing a force to cause a ring to form a barrier to fluid entry with the workpiece and preventing fluid from crossing the barrier to fluid entry by forming a pressure differential across the barrier.
Abstract:
A method of fluid processing a semiconductor workpiece, including disposing a workpiece holder with a housing capable of containing a fluid, the workpiece holder retaining the workpiece, providing an agitation system connected to the housing and comprising a member disposed within the housing adjacent the workpiece holder, and agitating the fluid by moving the member substantially parallel to a surface of the workpiece with a non-uniform oscillatory motion, the non-uniform oscillatory motion being a series of substantially continuous geometrically asymmetric oscillations wherein each consecutive oscillation of the series is geometrically asymmetric having at least two substantially continuous opposing strokes wherein reversal positions of each substantially continuous stroke of the substantially continuous asymmetric oscillation are disposed asymmetrically with respect to a center point of each immediately preceding substantially continuous stroke of the oscillation.
Abstract:
A device and method for increasing the mass transport rate of a chemical or electrochemical process at the solid and fluid interface in a fluid cell. The device includes a membrane in close contact with surface of the work piece, to separate the process cell into two chambers, so that fluid velocity at the work piece is controlled separately from the main cell flow. Thus the diffusion boundary layer is controlled and minimized by the rate that fluid is withdrawn from the work piece chamber.
Abstract:
A method and apparatus for fluid processing a workpiece are described. The system can include a process module and a system of one or more fluid processing elements to control the fluid flow and/or the electric field distribution during the fluid processing of the workpiece. A member can be used to agitate the fluid during deposition of a film (e.g., using an oscillatory motion). A plate can be used to shape an electric field incident on a surface of a workpiece. By controlling the fluid flow and the electric field distribution, improved deposition of the film on the workpiece surface can result. Furthermore, a vertical configuration and/or a modular architecture can be employed to improve throughput, increase productivity, and reduce cost.