Abstract:
A system for group controlling a plurality of elevators in accordance with group control algorithm including a plurality of parameters. This system includes a means for searching an optimum set. An optimum set means an optimum combination among combinations of parameters to be given to the group control algorithm. A new set is generated by crossing-over or mutation. Superior sets are accumulated in a storage by utilizing the additional registration of excellent sets in a storage and the deletion poor sets therefrom. An optimum set is selected from these superior sets. Therefore, the searching of an optimum set can be done efficiently.
Abstract:
In a method for allocating an elevator in an elevator system, the elevator system including elevator groups, each group including elevators, the elevator groups being formed based on a load unbalance of the elevators, the method includes: detecting received service calls in a predefined time window; evaluating a number of passengers requesting service based on the received number of service calls; selecting, based on the evaluated number of passengers, an elevator group to serve the floor; and allocating an elevator belonging to the selected elevator group to provide service. An apparatus, an elevator system, and a computer program are also disclosed.
Abstract:
Devices, methods and computer programs for elevator call allocation with stochastic multi-objective optimization are disclosed. At least some of the disclosed embodiments allow an elevator group control to take into account knowledge about possible future passenger arrivals when allocating new calls. At the same time, the new elevator calls can be allocated via optimizing multiple objectives, such as the waiting time, the time to destination, and/or the energy consumption. In other words, the invention makes it possible to both take into account the uncertainty related to future passengers and control the trade-off between different optimization objectives.
Abstract:
According to one aspect, there is provided a method for controlling an elevator group including at least a first elevator and a second elevator, wherein a counterweight balance of the first elevator differs from a counterweight balance of the second elevator, the method including: controlling the elevator group comprising at least the first elevator and the second elevator; determining threshold loads for the first and second elevator separately for up and down direction, a threshold load being dependent of the counterweight balance of the corresponding elevator, wherein the threshold load being a load for which consumed energy per up-down run is approximately zero; and controlling, when allocating an elevator in response to a destination call, route determination for the first and second elevator comprises minimizing a load difference from the threshold loads.
Abstract:
The invention relates to a method for controlling a passenger transport system, which transport system comprises at least two passenger conveyors, as e.g. escalators or elevators, which transport system comprises a control for the passenger conveyors and for controlling passenger flow in the transport system. The control is connected to a passenger flow determination device for establishing a passenger flow reference value of the actual passenger flow to be expected in the passenger transport system, and which control further comprises a passenger guide system for controlling passenger flow in the transport system, which passenger guide system uses a cost function considering a set of system control parameters as passenger riding time, energy consumption, passenger waiting time, passenger transport capacity, maintenance demand, etc. The control uses a transport model simulating the function of the hardware components of the transport system under consideration of correlated system operating parameters as e.g. number of active passenger conveyors, passenger conveyor speed, still-stand times, door opening times etc. in connection with passenger flow,whereby the passenger flow reference value is input to the transport model and in an optimization process the system operating parameters are optimized under use of the transport model to meet the passenger flow reference value under consideration of at least one significant system control parameter from said set of system control parameters to achieve a best set of system operating parameters. The best set of system operating parameters is applied to the control of the passenger transport system.
Abstract:
Elevator system passengers are transported in one or more of a plurality of elevator cars. The elevator cars can require different amounts of energy to operate. Passenger trips can be allocated to one car or another car based on the expected energy consumption for the trips in one or the other car.
Abstract:
An elevator system is provided with a remote hall call registering device by use of which an elevator passenger performs a hall call registration in a position at a prescribed distance from a hall. A moving time comparison device compares the predicted moving time Te of the elevator car with the predicted walking time Tw in the case where the floor on which a remote hall call registering device is installed is set as a parking floor. A standby operation go/no go determination device makes a determination as to whether or not to perform a standby operation based on the result of the comparison of the moving time comparison device, and carries out a standby operation after responses to all calls have been finished only in the case where the standby operation go/no go determination device made a determination to the effect that a standby operation should be performed.
Abstract:
A system for controlling the elevators in an elevator system based on passenger presence. The elevator system includes a number of elevators (1A . . . 1H) wherein first sensor members (2, 2A . . . 2H), second sensor members and additional sensor members are arranged in a waiting area of each elevator (1A . . . 1H) on each floor (F, F1, F2, F3 . . . Fn). The first, second and additional sensor members are fitted to give information about the presence and number of passengers waiting to go either up or down for an elevator at least in the waiting area in question. A controller is provided for controlling the elevators. The controller receives information from the first, second and additional sensor members about the presence and number of passengers waiting for an elevator and to control the movement of the elevators of the elevator system utilizing the information received from the first, second and additional sensor members.
Abstract:
The present invention discloses a method for controlling an elevator system. In the method an elevator is allocated for the use of a passenger in a first optimization phase in such a way that a first cost function is minimized, a second optimization phase is performed, in which the route of the allocated elevator is optimized in such a way that a second cost function is minimized.
Abstract:
An elevator system can be operated while recording the energy consumption of at least one energy consumer of the elevator system and at least one traffic situation of the elevator system. At least one energy consumption value is determined for the recorded energy consumption and the recorded traffic situation, and the calculated energy consumption value is output to at least one output means.