Abstract:
In order to obtain substances that are optically transparent in the infrared range, usable in the manufacture of optical fibers or radiation emitters, a metal or metalloid chalcogenide other than an oxide is produced by a double-substitution reaction between a starting chalcogen compound--particularly a hydride such as H.sub.2 S, H.sub.2 Se or H.sub.2 Te--and a salt of the desired metal or metalloid, e.g. a chloride. The starting compound and the reactant salt preferably are vaporized at a temperature below the melting point of the resulting metal chalcogenide which thereupon precipitates in the reaction chamber.
Abstract:
Optical devices and a method for manufacturing these devices. One optical device includes a core region having a first medium of a first refractive index nl, and includes a cladding region exterior to the core region. The cladding region includes a second medium having a second refractive index n2 higher than the first refractive index nl. The cladding region further includes a third medium having a third refractive index n3 lower than the first refractive index nl . The third medium is dispersed in the second medium to form a plurality of microstructures in the cladding region. Another optical device includes a plurality of core regions including at least one core having a doped first medium, and includes a cladding region exterior to the plurality of core regions. The core regions and the cladding region include a phosphate glass.
Abstract:
This invention pertains to a hollow core photonic band gap chalcogenide optical glass fiber (100) and to a fabrication method for making the fiber (100). The fiber, which is 80-1000 microns in outside diameter, is characterized by a solid glass circumferential region (106) and a structured region (104) disposed centrally within the solid region (106), the structured region (104) includes a hollow core (102) of 1 micron to several hundreds of microns in diameter surrounded by a plurality of parallel hollow capillaries extending parallel to the core, the core (102) being centrally and longitudinally located within the fiber. Ratio of open space to glass in the structured region is 30-99 %. The fabrication method includes the steps of providing a mold, placing chalcogenide micro-tubes around the mold, stacking chalcogenide micro-canes around the stacked micro-tubes, fusing the micro-tubes and the micro-canes to form a preform, removing the mold and drawing the preform to obtain the fiber. In an alternative fabrication method, the fiber is made by extruding flowing chalcogenide glass through suitably made plate to form a preform and then drawing the preform to form the fiber (100).
Abstract:
The invention provides techniques for drawing fibers that include conducting, semiconducting, and insulating materials in intimate contact and prescribed geometries. The resulting fiber exhibits engineered electrical and optical functionalities along extended fiber lengths. The invention provides corresponding processes for producing such fibers, including assembling a fiber preform of a plurality of distinct materials, e.g., of conducting, semiconducting, and insulating materials, and drawing the preform into a fiber.
Abstract:
The invention concerns a reaction chamber comprising a first container (1), a second container (4) connected to a conduit (6), an outer tube (3) emerging into the container (1), an outer tube (8) emerging into the conduit. The container (1) is designed to receive a sleeve glass, and the container (4) a core glass for optical fiber. The method for using said chamber, after vacuum sealing in (3a) and (8a), and heating the chamber at a sufficient temperature for melting the glasses, the chamber being in the position represented with the tube (3) in vertical position, consists: in a 180 DEG anti-clockwise rotation about an axis perpendicular to the figure. The sleeve glass flows into the tube (3) while the core glass remains confined in the container (4); cooling the tube (3), then returning to the original position; part of the sleeve glass, maintained in liquid form in the center of the tube (3), drops into the container (1); carrying out another 180 DEG rotation, but clockwise. The core glass flows into the conduit (6) and drops by gravity into the empty central part of the tube (3), while the sleeve glass which has dropped again into the tube (3) and has cooled, remains congealed on the wall of the container (1). The invention thus enables preparation, in a vacuum sealed chamber containing the two glasses, a preform for optical fiber.
Abstract:
In general, in one aspect, the invention features a method that includes exposing a surface to a first gas composition under conditions sufficient to deposit a layer of a first chalcogenide glass (240) on the surface, and exposing the layer of the first chalcogenide glass (240) to a second glass composition under conditions sufficient to deposit a layer of a second glass (230) on the layer of the first chalcogenide glass, wherein the second glass is different from the first chalcogenide glass.
Abstract:
Aufgabe der Erfindung ist es, eine kompakte Anordnung zur Erzeugung von optischen Mehrwellensignalen anzugeben, die einfacher und preiswerter in ihrer Herstellung als die dem Stand der Technik nach bekannten Lösungen ist. Die erfindungsgemäße Lösung sieht eine Anordnung zur Erzeugung von optischen Mehrwellensignalen vor, die mindestens eine Pumpquelle (1), die Pumpimpulse erzeugt, und eine Mehrkern-Photonische-Kristallfaser (MCPCF) (3) aufweist, die aus N Kernen und um die Kerne angeordneten Kapillaren aus einem Material mit einer kleineren Brechzahl als der des Kerns besteht, wobei jeder Kern mit den um ihn angeordneten Kapillaren einen Wellenleiter bildet und alle Wellenleiter geringe Unterschiede in der effektiven Brechzahl aufweisen, und Pumpquelle und MCPCF derart verbunden sind, dass die Pumpimpulse in die gesamte Fläche der MCPCF eingestrahlt und beim Durchgang der Pumpimpulse durch die einzelnen Wellenleiter mittels Vierwellenmischung Idler-Impulse mit unterschiedlichen diskreten Wellenlängen erzeugt werden.
Abstract:
In one aspect, a method is provided for molding from glass complex optical components such as lenses, microlens, arrays of microlenses, and gratings or surface-relief diffusers having fine or hyperfine microstructures suitable for optical or electro-optical applications. Thereby, molds are used, which define the profile of the optical components, made on metal alloys, particularly titanium or nickel alloys, or refractory compositions, with or without a non-reactive coating are provided. Given that molding optical components from oxide glasses has numerous drawbacks, it has been discovered in accordance with the invention that non-oxide glasses substantially eliminates these drawbacks. The non-oxide glasses, such as chalcogenide, chalcohalide, and halide glasses, may be used in the mold either in bulk, planar, or power forms. In the mold, the glass is heated to about 10-110°C, preferably about 50°C, above its transition temperature (Tg), at which temperature the glass has a viscosity that permits it to flow and conform exactly to the pattern of the mold.