Abstract:
In a known process for the production of opaque quartz glass a blank is formed from synthetic SiO2 granulate and is heated at a vitrification temperature to form a body of opaque quartz glass. In order to provide on this basis a process for the production of pure opaque quartz glass with a homogenous pore distribution, high density, high viscosity and a low tendency to devitrify, it is proposed according to the invention that the SiO2 granulate to be used is a SiO2 granulate (21; 31) composed of at least partially porous agglomerates of SiO2 primary particles, with a specific BET surface ranging from 1.5 m2/g to 40 m2/g and an apparent density of at least 0.8 g/cm3. A SiO2 granulate (21; 31) suitable for the implementation of the process is distinguished in that it is formed from at least partially porous agglomerates of SiO2 primary particles and in that it has a specific BET surface ranging from 1.5 m2/g to 40 m2/g and an apparent density of at least 0.6 g/cm3.
Abstract:
Fused silica stepper lens for photolithographic application are disclosed which are resistant to laser-induced damage, specifically, compaction or densification which can lead to an increase in the optical path length of the lens. The figure compares the phase front distortions of a standard fused silica with the phase front distortions observed in two inventive stepper lens fused silica.
Abstract:
A method for producing a high purity synthetic quartz powder, characterized by using a tetramethoxysilane having a trimethoxymethylsilane content of at most 0.3 wt %, and converting it to a synthetic quartz by a sol-gel method.
Abstract:
A method of producing a fused silica glass by thermally converting a polymethylsiloxane precursor, the lens transmitting ultraviolet radiation at wavelengths below 300 nm. without undergoing a marked absorption transition, the lens so produced, and a microlithography system employing a lens of such glass.
Abstract:
Cristobalite-containing silica glass is provided wherein .alpha.-cristobalite in the shape of a small sphere or a small, round-edged or sharp-edged, three-dimensional region is dispersed in the silica glass matrix. The diameter of each .alpha.-cristobalite sphere or region is, in the range of 0.1 um to 1000 um, and the content of the .alpha.-cristobalite is at least 10 wt. %. The cristobalite-containing silica glass is produced by heating a mixture of two kinds or more of crystalline silicon dioxide powder with melting points different from each other by 20.degree. C. or more. The mixture contains silicon dioxide having the highest melting point in the range of 10 wt. % to 80 Wt. % and is heated at temperatures ranging from the lowest melting point to a temperature lower than the highest melting point.
Abstract:
A process for producing opaque silica glass in which a quartz raw material grain having a particle size of 10 to 350 .mu.m is filled into a heat resistant mold, the quartz raw material grain is heated in a non-oxidizing atmosphere from a room temperature up to a temperature lower by 50.degree. to 150.degree. C. than a temperature at which the above raw material grain is melted at a temperature-increase speed not exceeding 50.degree. C./minute, then, slowly heated up to a temperature higher by 10.degree. to 80.degree. C. than the temperature at which the quartz raw material grain is melted at the speed of 10.degree. C./minute or less, and the heated quartz raw material grain is further maintained at the temperature higher by 10.degree. to 80.degree. C. than the temperature at which the quartz raw material grain is melted, followed by cooling down to the room temperature. Especially, in the case of producing a large scale opaque silica glass block, a quartz raw material grain filled into a heat-resistant mold is heated by a belt-like heating source located perpendicularly to a trunk of a filling layer of the quartz raw material grain so as to form a moving heating zone in the filling layer and the heating zone is successively moved either upwardly starting at the lower end portion of the filling layer or downwardly starting at the upper end portion thereof in a non-oxidizing atomosphere.
Abstract:
An improved sol-gel process for fabricating large, crack-free gel monoliths (e.g., of silica) is described in which a specially-tailored gel microstructure is provided by adjusting the relative concentrations of an alcohol diluent (e.g., ethanol) and/or one or more catalysts (e.g., HCl and HF). Controlled variations in the gel's average pore radius, bulk density, rupture modulus, and elastic modulus over a wide range can be tailored in this fashion. This enables the process to be optimized for the particular application involved.
Abstract:
A process for making non-porous, dense, silica partices having a diameter of about 3 to 1000 microns, a nitrogen B.E.T. surface area less than about 1 m.sup.2 /g, a total impurity content of less than about 50 ppm and a metal impurity content content of less than about 15 ppm from an aqueous dispersion of fumed silica. The particles are converted into porous particles and sintered in an atmosphere having a water partial pressure of from about 0.2 to about 0.8 atmosphere for temperatures below about 1200.degree. C.
Abstract:
A method for manufacturing synthetic silica glass by reacting methyl silicate and aqueous ammonia, dispersing the silica particles produced in water, solidifying the silica by the addition of methyl silicate and heating, dehydrating, de-solventing, decarburizing and sintering the solid silica to produce a glass product. The sintered glass may be pulverized to produce a powder. The inventive method is easily carried out and avoids the high energy costs of the prior art. The glass product obtained exhibits excellent high temperature viscosity.
Abstract:
A sol-gel process is utilized for producing silicon oxide glasses useful in the manufacture of devices such as semiconductor devices. These glasses are easily deposited by techniques such as spinning. Not only is the glass easily applied, but also has advantageous electrical, etching, and mechanical properties. Thus, these glasses are useful in applications such as passivating layers for integrated circuit devices and as intermediary layers in trilevel lithography for the production of such devices.