Abstract:
An adjustable sports rope comprised of a hollow base rope sheath and an adjustment rope. The hollow base rope sheath is a hollow sheath with at least two openings. The adjustment rope enters into the hollow base rope sheath through one of the at least two openings and exits the base rope sheath through another of the at least two openings. The one end of the hollow base rope sheath terminates at a tie point. The end of the adjustment rope disposed furthest from the hollow base rope sheath tie point is also a tie point. By creating a tensile force between the tie point of the hollow base rope sheath and the tie point of the adjustment rope, the hollow base rope sheath will tighten on the adjustment rope, holding the adjustment rope in place.
Abstract:
In an elevator rope, an inner layer rope has: an inner layer rope fiber core; a plurality of inner layer strands; and a resin inner layer rope coating body that is coated onto an outer circumference. Inner layer strands are twisted together on an outer circumference of the inner layer rope fiber core. The inner layer strands have: an inner layer strand fiber core that is disposed centrally; and a plurality of steel inner layer strand wires that are twisted together on an outer circumference of the inner layer strand fiber core. In addition, a plurality of steel outer layer strands are twisted together on an outer circumference of the inner layer rope.
Abstract:
A hybrid rope (40) or a hybrid strand (50) comprising a core element (42, 52), a first (44, 54) and a second (46, 56) metallic closed layer surrounding said core element (42, 52). The core element (42, 52) includes a bundle of synthetic yarns. The first metallic closed layer (44, 54) includes a plurality of first strands of wires helically twisted together with the core element (42, 52) in a first direction. The second metallic closed layer (46, 56) includes a plurality of second wires or strands helically twisted together with said core element (42, 52) and said first metallic closed layer (44, 54) in a second direction. The cross-sectional area of the core element (42, 52) is larger than the total cross-sectional area of the first (44, 54) and second (46, 56) metallic closed layers. A corresponding method of producing such a hybrid rope or hybrid strand is also disclosed.
Abstract:
The present invention relates to a rope for an elevator. The rope for the elevator comprises: a center strand formed by twisting a plurality of wires; inner layer strands formed by twisting the plurality of wires and arranged along the outer periphery of the center strand; and outer layer strands formed by twisting the plurality of wires and arranged along the outer periphery of the inner layer strands, wherein ten of each of the inner layer strands and the outer layer strands are prepared, the diameter of the center strand, the diameter of the inner layer strand and the diameter of the outer layer strand are respectively 0.33-0.35 times, 0.13-0.15 times and 0.22-0.24 times as large as the diameter of a first imaginary circle circumscribed around the outer layer strands, and a fill factor is 64-67%.
Abstract:
A rope (20) comprising a core element (22) surrounded by a plurality of helically twisted and compacted steel strands (24) comprising steel wires (25, 26, 27) having a nominal tensile strength of at least 1960 N/mm2. The core element (22) comprises natural fibers having a linear density of at least 50 g/m.
Abstract translation:一种绳索(20),包括由包括具有至少为1960N / mm 2的标称拉伸强度的钢丝(25,26,27)的多个螺旋扭曲和压实的钢绞线(24)包围的芯元件(22)。 核心元件(22)包括线密度为至少50g / m 2的天然纤维。
Abstract:
The invention provides a composite rope (10, 20) and mesh net (50) made therefrom. The composite rope (10, 20) comprises a plurality of outer fibre strands (14, 24) twisted or braided around an inner elongate core (12, 22) so as to provide the rope (10, 20) with increased durability. The inner elongate core (12, 22) extends at least partially in a helical configuration, and may comprise an expanded metal wire core having a helical configuration, alternatively a number of steel or synthetic elongate strands or filaments (26) wound to form a twisted cable in which each strand or filament (26) has a helical configuration. The mesh net (50) comprises a number of lengths of rope (52) knotted together at regular spaced intervals, with the net (50) being stretched and heat set during manufacture, and wherein the mesh net (50) includes at least some lengths of composite rope (10, 20) in accordance with the invention. The invention further provides for methods of using the mesh net (50).
Abstract:
The invention relates to cord (20) comprising a number of filaments twisted together. The peripheral surface of the cord (20) is at least partially coated with an adhesion promoting coating (24). The adhesion promoting coating (24) comprises at least a first layer comprising a silicon based coating, a titanium based coating, a zirconium based coating or a combination thereof. The invention further relates to a composite material comprising such a cord (20) embedded in a polymer material. Furthermore the invention relates to a method to manufacture such a cord (20).
Abstract:
A composite cable or rope is described. The cable or rope has an inner metallic rope or core, consisting of a plurality of metal strands, and a plurality of covering layers formed around the inner metallic core. An innovative anchoring and safety system is also described. The system has one or more anchorages, fixed to the roof, in each of which the rope is stably locked by screwing, so as not to create instability problems for people attached to the rope.
Abstract:
In an elevator rope, a plurality of steel outer layer strands are twisted together on an outer circumference of an inner layer rope. The inner layer rope has: a fiber core; a plurality of steel inner layer strands that are twisted together directly onto an outer circumference of the fiber core; and a resin inner layer rope coating body that is coated onto the outer circumference. A diameter of the inner layer strands is smaller than a diameter of the outer layer strands. The inner layer strands are greater in number than the outer layer strands.
Abstract:
A method of constructing a wire rope from plural outer strands and a core, the core having one or more core strands, each of the one or more core strands having plural core wires, the method comprising: swaging the core to laterally compress the core to an extent sufficient to cause concave deformation of at least some of the plural core wires; and closing the plural outer strands over the core to produce the wire rope.