Abstract:
A gas storage system includes a tank, having a tank gas outlet, and a multitude of gas emitting entities encapsulated by the tank. The gas emitting entities are arranged for providing a gas volume, which when released from the gas emitting entities, is considerably larger than a volume of the gas emitting entities themselves. The gas emitting entities are freely contained in the tank. There are no gas conduits or electrical connections to the tank which has a sealable opening suitable for removal or insertion of the gas emitting entities. The latter have a respective gas release device, which is operable as a response on a stimulation signal. A volume surrounding the gas emitting entities inside the tank is the sole fluid connection between an opening of the gas release device and the tank gas outlet. Methods for storing and releasing gas are also presented.
Abstract:
The present invention discloses apparatuses, systems, and methods for controlling liquid impact pressure in liquid impact systems. The liquid impact systems include at least one gas and a liquid, the gas having a density (PG) and a polytropic index (κ) and the liquid having a density (PL). The methods include the step of calculating a liquid impact load of the liquid on the object by determining a parameter Ψ for the system, wherein Ψ is defined as (PG/PL) (κ−1)/κ. The systems are also configured to utilize the parameter Ψ. The parameter Ψ may be adjusted to increase or reduce the liquid impact load on the system. Automatic, computer-implemented systems and methods may be used or implemented. These methods and systems may be useful in applications such as LNG shipping and loading/off-loading, fuel tank operation, manufacturing processes, vehicles dynamics, and combustion processes, among others.
Abstract:
These inventions related to systems and methods for producing, shipping, distributing, and storing hydrogen. In one embodiment, a hydrogen production and storage system includes a plurality of wind turbines for generating electrical power; a power distribution control system for distributing, and converting the electrical power from the wind turbines, a water desalination and/or purification unit which receives and purifies seawater, and an electrolyzer unit that receive electrical power from the power distribution system and purified water from the desalination units and thereby converts the water into hydrogen and oxygen. After its production, hydrogen is stored, transported, and distributed in accordance with various embodiments.
Abstract:
A composite pressure vessel, comprising: a liner assembly, further comprising: a liner; at least one of a polar boss and a blind boss; and a shell, further comprising: at least one layer of a filament wrap continuously disposed around at least a substantial portion of the liner assembly, wherein the liner assembly and the filament wrap combined have a non-homogenous support profile; and at least one fiber segment locally disposed on an area of the liner assembly and the at least one layer of a filament wrap that may be more susceptible to rupture than other areas of the liner assembly, according to the non-homogenous support profile. Complementary pairs of fiber segments and/or hoops may be configured to address a non-homogenous stress distribution profile of the composite pressure vessel.
Abstract:
A flat inner container (3), especially an internal tank for a road vehicle, which is surrounded by an outer container (1) and is used for receiving a cryogenic liquid, particularly a fuel. The inner container (3) comprises a combination of the following features: a longitudinally extending monolithic base (4) with a top wall (5) and a bottom wall (6) which are connected to also longitudinally extending sidewalls (7), and with at least two longitudinally extending, substantially straight webs (9) that connect the bottom wall (6) to the top wall (5) so as to form at least one longitudinally extending chamber (10) which is arranged between the webs, extends along the entire length of the base (4) as well as from the bottom wall (6) to the top wall (5), and has a predetermined width between the webs; and at least two caps (11) which tightly seal the two open ends of the base (4) at the periphery; the top wall and/or the bottom wall is/are provided with an arch relative to a planar reference top wall and/or reference bottom wall, the distance of the arch between the inner contour of the top wall and/or the bottom wall and the planar reference top wall and/or reference bottom wall amounting to less than 30 percent of the width of the chamber in the center between the webs.
Abstract:
A gas storage system (1) comprises a tank (10), having a tank gas outlet (28), and a multitude of gas emitting entities (20) encapsulated by the tank (10). The gas emitting entities (20) are arranged for providing a gas volume, which when released from said gas emitting entities, is considerably larger than a volume of the gas emitting entities (20) themselves. The gas emitting entities (20) are freely contained in the tank (10), i.e. there are no gas conduits or electrical connections to the tank (10). The tank (10) has a sealable opening (18) suitable for removal or insertion of the gas emitting entities (20) and the gas emitting entities (20) have a respective gas release device, which is operable as a response on a stimulation signal. A volume (14) surrounding the gas emitting entities (20) inside the tank (10) is the sole fluid connection between an opening of the gas release device and the tank gas outlet (28). Methods for storing and releasing gas are also presented.
Abstract:
The technology described herein provides hydrogen storage and delivery systems, including both on-board and off board systems. Additionally, the technology provides a conformable high-pressure hydrogen storage vessel that utilizes porous hollow microspheres to store and release hydrogen. This technology still further provides a net endothermic (upon gas desorption) material inserted into and encapsulated within the porous hollow microspheres to store hydrogen, and a heat exchange system to release the stored hydrogen out of the microspheres.
Abstract:
A compressed gas tank for a motor vehicle includes a metallic gas container having opposite container walls which are constructed with a profiling to increase rigidity, and at least one tie element extending across the gas container. The profiling is realized by stamping a plurality of wall portions from the plane of the container walls to assume a convex and/or concave configuration.
Abstract:
The present invention relates to a vessel for dispensing and recovering of technical and medical gases and system for delivery and recovery of technical and medical gases.
Abstract:
Imitating forms in nature can produce storage tanks of exquisite structure that can hold substances at very high pressures, but weighing very little. Examples are Euplectella Aspergillum and the chicken egg. They are marvelously created to withstand extreme pressures with an extremely thin and light structure. These pressures come from outside their structures to enter inward. Storage tanks may hold substances that exert pressures in the opposite direction, that is from the inside pushing out. To imitate the egg and aspergillum, the curves of the form would need to be reversed. This may produce a structure that instead of curving inward, as a sphere or oval shape, curves outward to present an arch against the outwardly expanding substance the tank is holding on the inside to effectively redistribute the forces. Also, the amount of curvature of the tank can vary as it curves outward and the sides can curve outward reversing the sides of an egg, or like an egg curve inward or have different angles of curvature but having at least one side, whether curved and curving inward or concave or a flat facet or side angled to project inward, thus presenting a curved or pointed arch pointed inward against the outwardly expanding substances held inside the tank. This is the opposite of an egg presenting an arch against the weight of a hen. Also, the tanks with at least one side or facet curved outward away from the interior of the tank or with facets or faceted away from the interior of the tank can have different shapes or geometries and or endpoints. Again, the purpose is to form a storage tank to efficiently hold the most amount of a substance with a minimum of weight and or space.