Abstract:
Disclosed are apparatus, kits, methods, and systems that include a radiation source configured to direct radiation to a sample; a detector configured to measure radiation from the sample; an electronic processor configured to determine information about the sample based on the measured radiation; a housing enclosing the source, the detector, and the electronic processor, the housing having a hand-held form factor; an arm configured to maintain a separation between the sample and the housing, the arm including a first end configured to connect to the housing and a second end configured to contact the sample; and a layer positioned on the second end of the arm, the layer being configured to contact the sample and to transmit at least a portion of the radiation from the sample to the detector.
Abstract:
Motion control system and method for biosensor scanning that include inputting to a multi-axis motion controller move commands associated with the scan path as defined by multiple axes. The multiple axes including an x-baseline coordinate x0, a y-baseline coordinate y0, an x-direction oscillation amplitude x1, a y-direction oscillation amplitude y1, an oscillation frequency f and a phase φ. The multi-axis motion controller outputs digital commanded positions for each of the multiple axes. A post-processor receives the commanded positions and generates parameterized commanded positions x and y that each include a baseline motion component and an oscillating motion component. The parameterized commanded positions cause the scanning optical system to deflect the light beam to scan the beam spot over the scan path to scan the biosensor.
Abstract:
A surface inspection system, as well as related components and methods, are provided. The surface inspection system includes a beam source subsystem, a beam scanning subsystem, a workpiece movement subsystem, an optical collection and detection subsystem, and a processing subsystem. The system features a variable scan speed beam scanning subsystem, preferably using an acousto-optic deflector, with beam compensation, so that variable scanning speeds can be achieved. Also included are methods and systems for improving the signal to noise ratio by use of scatter reducing complements, and a system and method for selectively and repeatedly scanning a region of interest on the surface in order to provide additional observations of the region of interest.
Abstract:
A method for inspecting a surface of a workpiece comprises scanning an incident beam on the surface of the workpiece to impinge thereon to create reflected light and scattered light comprising light that is scattered from the surface upon impingement thereon by the incident beam; and determining an extent of a contribution to surface roughness from a component of the surface, with the component having a surface roughness spatial frequency range.
Abstract:
A surface inspection system includes a beam source subsystem, a beam scanning subsystem, a workpiece movement subsystem, an optical collection and detection subsystem, and a processing subsystem. The processing subsystem has a channel formation capability for forming selected channels and developing channel output associated with each selected channel, with the channel output developed from collector output associated with at least one collection and detection module. Also, a spherical defect channel is described for detection of small spherical objects and defects with like geometries, using scattered light observed by the back collector output and P-polarized scattered light observed by wing collectors
Abstract:
A surface inspection system, as well as related components and methods, are provided. The surface inspection system includes a beam source subsystem, a beam scanning subsystem, a workpiece movement subsystem, an optical collection and detection subsystem, and a processing subsystem. The system features masking positioned in the collection and detection subsystem arranged to selectively prevent a portion of scattered light from passing through. Also included is a scatter absorbing system having a series of scatter absorbing elements for minimizing unrelated to the scatter associated with a desired location on the surface.
Abstract:
A method and system for high-speed 2Θ multi-point scatterometry is disclosed. The method includes directing a laser beam from a laser light source to a collimation optical system that collimates the laser beam to a collimated laser beam; adjusting a polarization of the collimated laser beam using a polarization control optics; directing the collimated laser beam that is polarized by a first optical system to illuminate a focal area on a sample surface; receiving reflected light from the focus of the laser light source at the sample surface by a second optical system; detecting the reflected light by a detector system to produce detection signals; and processing the detection signals to measure parameters of the sample surface.
Abstract:
The invention relates to a method for localizing an emitter (F) in a sample (S) comprising illuminating the sample (S) with a stationary donut-shaped excitation beam (E), acquiring fluorescence photons; and estimating a position of the emitter (F) in the sample (S) from the acquired fluorescence photons. The invention further relates to an apparatus (1) for localizing an emitter (F) in a sample (S) comprising illumination means (10), acquisition means (20) and processing means (30) and a computer program comprising instruction to cause the apparatus (1) to execute the method for localizing an emitter (F).
Abstract:
An analyzer of a component in a sample fluid includes an optical source and an optical detector defining a beam path of a beam, wherein the optical source emits the beam and the optical detector measures the beam after partial absorption by the sample fluid, a fluid flow cell disposed on the beam path defining an interrogation region in the a fluid flow cell in which the optical beam interacts with the sample fluid and a reference fluid; and wherein the sample fluid and the reference fluid are in laminar flow, and a scanning system that scans the beam relative to the laminar flow within the fluid flow cell, wherein the scanning system scans the beam relative to both the sample fluid and the reference fluid.
Abstract:
Systems and methods for examining spectral data over the course of a high speed event are described. The systems and methods can enable observation of the spectral evolution of a transient phenomenon into segment intervals on the order of, milliseconds or microseconds. The methods include reflecting light from an event off of a rotating mirror and sequentially delivering light from the mirror to a series of optical waveguides for sequential spectral analysis. The systems and methods can be useful in a wide variety of applications such as, LIBS applications; examination of high energy devices such as explosions or simulations of explosions; examination of deposition processes, e.g., coating formations; examination of chemical reactions; etc.