Abstract:
Provided is an ink supply cartridge for a printhead assembly having a printhead integrated circuit (IC) and a guide assembly for guiding ink to the IC. The ink supply cartridge includes a first U-shaped top portion defining side walls, and a second base portion for complementarily receiving the first portion so that the side walls define elongate ink reservoirs together with the base portion. The base portion includes an end portion defining a series of air inlets with convoluted winding channels leading to the ink reservoirs, said channels hydrophobically treated to prevent ink escaping from the channels.
Abstract:
Disclosed are a scanner capable of adjusting the focus distance and an image forming apparatus having the same. The scanner may include a focus adjustment structure that comes into an interfering contact with a scanning unit as the scanning unit moves along a scanning path so as to cause a movement of the scanning unit in the direction perpendicular to the scanning path toward and away from the document to be scanned. With such configuration the focus adjustment can be realized using the scanning movement of the scanning unit along the scanning path.
Abstract:
A scanning device comprising a first image sensor, a second image sensor module and a housing. The first image sensor module has a first image array sensor for scanning information from a first side of media. The second image sensor module is mounted opposite the first image sensor module so that the media can move to a scanning region between the first image sensor module and the second image sensor module. The second image sensor module has a second image array sensor for scanning information from a second side of the media. A housing is attached to the second image sensor module. When the media moves to the scanning region between the first image sensor module and the second image sensor module and exits the scanning region, when the media reenters the scanning region, the media impacts a convex region of the housing that causes the second image sensor module to move with respect to the first image sensor module and to thus provide sufficient separation distance between the second image sensor module and the first image sensor module to allow the media to re-enter the scanning region.
Abstract:
An image reading apparatus includes a first reading part which reads a first side of a document, a second reading part located on a document discharge path which reads a second side of the document with an image sensor, a path narrowing member positioned across from the image sensor on the document discharge path; and an adjusting unit, wherein the adjusting unit adjustably moves the path narrowing member closer to and farther away from the image sensor in order to correspondingly move the document closer to and farther away from the image sensor. The image reading apparatus is capable of increasing reading speed when a one-side reading of a document is performed as well as minimizing any damage done to data produced by the reading when a double-side reading of a document is performed. Thus, the present invention is capable of increasing a reading speed when an one-side reading is performed as well as minimizing any damages done to data produced by the reading when a double-side reading is performed, and an image forming apparatus including the same.
Abstract:
Provided is an ink supply cartridge for a printhead assembly having a printhead integrated circuit (IC) and a guide assembly for guiding ink to the IC. The ink supply cartridge includes a first U-shaped top portion defining side walls, and a second base portion for complementarily receiving the first portion so that the side walls define elongate ink reservoirs together with the base portion. The base portion includes an end portion defining a series of air inlets with convoluted winding channels leading to the ink reservoirs, said channels hydrophobically treated to prevent ink escaping from the channels.
Abstract:
An image reading device according to one aspect of the invention comprises: a conveying unit configured to convey a recording medium; a first transmissive portion having a first surface that allows the recording medium to pass the first surface; a second transmissive portion having a second surface on which a recording medium is allowed to be placed; an image reading unit comprising a line sensor extending in a first direction and movable on a second path, the second path continuously extending below the first transmissive portion and the second transmissive portion; and a driver configured to move the image reading unit on the second path. A relative distance between the line sensor and the first surface changes in the second path below the first transmissive portion. The recording medium can be read at positions having the relative distances different one another.
Abstract:
According to an aspect of the invention, there is provided an image reading apparatus including: a first plate including a stationary document reading region; an image reader configured to scan a document on the first plate; a carriage supporting the image reader in a state that the carriage keeps the image reader predetermined distance from the first plate; and a guiding member that makes the image reader move downwardly by contacting an edge of the first plate.
Abstract:
An image reading apparatus including a shading correction mechanism that can be formed by fewer component parts than conventional ones, and is increased in the degree of freedom of design, thereby enabling reduction of the size and weight thereof. A contact glass guides an original to an image reading position. A glass holding member holds the glass. A line image sensor reads an image on the original conveyed to the image reading location, through the contact glass. A reference member is disposed at a location different from the image reading location on the contact glass. A moving mechanism relatively moves the line image sensor and the reference member so that the line image sensor can alternatively read the original conveyed to the image reading location and the reference member. A drive section externally drives the moving mechanism to move the line image sensor and/or the reference member.
Abstract:
A height adjustment structure for an image-scanning device. The scanning device has a guiding rod, an optical system and a document panel. The guiding rod and the document panel are fixed relative to each other. The optical system includes a box body and an axial rod bearer that can slide along into the guiding rod. The height adjustment structure includes a first positioning section and a second positioning section. The first positioning section is attached to one side of the box body and the second positioning section is attached to one side the axial rod bearer that faces the first positioning section. The first positioning section and the second positioning section has hooking mechanism, screwing mechanism or teeth-meshing mechanism for fixing the box body relative to the axial rod bearer and hence setting the distance from the box body to the document panel.
Abstract:
An image reader includes a casing, a contact glass plate, a contact image sensor, and a sliding mechanism; wherein the contact image sensor has a housing, a light source attached to the housing so as to face the contact glass plate, a plurality of light receiving elements attached to the housing so as to face the contact glass plate and aligned in parallel in a longitudinal direction of the housing, and a bearing formed integral to the housing at a position below a lower surface of the housing; and the sliding mechanism includes a guide shaft provided on the casing and extending in a short direction of the housing and inserted through the bearing, and an urging member elastically which urges the guide shaft toward the contact glass plate so that the housing is pressed against the contact glass plate.