Abstract:
Combining nanosized particles of a source of desired dental restorative, repair or therapeutic materials with strengthening agents in various generally nanosized form such as whiskers, fibers, particles and the like in a resin matrix provides a highly strain resistant composite which more effectively releases the therapeutic agents. The utilization of nano sized particles of the therapeutic agent in the combination enables observation of significantly improved therapeutic results.
Abstract:
Living cellular material is encapsulated or placed in a protective material (cell protector) which is biocompatible, biodegradable and has a three-dimensional form. The three dimensional form is incorporated into a matrix that maybe implanted in vivo, ultimately degrade and thereby by replaced by living cell generated material.
Abstract:
Remineralizing dental cements contain source(s) of calcium and phosphate ion s, adhesive resin monomers, reinforcing base resin monomers, and catalysts able to initiate the polymerization of the adhesive and reinforcing base resin monomers. Such dental cements can be used as orthodontic cements, crown and bridge cements, adhesives, sealants, cavity liners, and protective coatings. The release of calcium and phosphate ions and, optionally, fluoride ions, protects tooth structure from demineralization, a precursor of tooth decay.
Abstract:
Calcium peroxyphosphate compounds and dental compositions comprising these compounds that combine both whitening/stain removal of teeth with remineralization are disclosed. The calcium peroxyphosphate compounds are capable of releasing, in an aqueous environment, whitening and reminiralization effective amounts of calcium ion, phosphate ion, and active oxygen. Preferred compounds are calcium peroxymonophosphate or calcium diperoxymonophosphate compounds. These compounds may be used in humans and other animals, including other mammals.
Abstract:
Disclosed are endodontic filling materials and methods. A method for filling a dental root canal may include providing a hydrosetting filling material and inserting the hydrosetting filling material into the dental root canal, the material setting in the root canal to form a biocompatible filling. The hydrosetting filling material comprises a hydrogel former and a filler. The hydrogel former is at least one of a reactive organic hydrogel formers, an inorganic hydrogel formers, and a non-reactive organic hydrogel formers, and the filler is at least one of a self-hardening and a non-hardening filler. Plural filling material precursor compositions that collectively contain hydrogel formers and fillers may be provided.
Abstract:
Disclosed are dual-phase cement precursor systems and related methods and kits. The cement precursor systems are composed of a first and second discrete phases, at least one of which is aqueous. When combined, the cement precursor phases form a cement that is suitable as a bone graft material for bone repair procedures. In preferred embodiments, the materials are highly biocompatible, osteoinductive, and bioresorbable. A number of different but not mutually exclusive cement chemistries may be employed in the cement precursor systems. For instance, hydrogel-forming polymer cements, carboxyl/calcium cements, or calcium phosphate cements may be employed.
Abstract:
A bone or dental implant material in the form of a paste includes a mixture of calcium phosphate and/or calcium-containing powders, liquid glycerol, organi c acid and gelling agent. The paste is stable, resistant to washout and will harden upon exposure to water. Physical characteristics of the paste, including consistency, porosity, and hardening time, are controlled by the choice and ratio of constituents.
Abstract:
This study reports in vitro and in vivo properties of fluorapatite (FA)-forming calcium phosphate cements (CPCs). Experimental cements contained from (0 to 3.1) mass % of F, corresponding to presence of FA at levels of approximately (0 to 87) mass %. The crystallinity of the apatitic cement product increased greatly with the FA content. When implanted subcutaneously in rats, the in vivo resorption rate decreased significantly with increasing FA content. The cement with the highest FA content was not resorbed in soft tissue, making it biocompatible and bioinert CPC. These bioinert CPCs are candidates for use in useful applications where slow or no resorption of the implant is required to achieve the desired clinical outcome.
Abstract:
Living cellular material is encapsulated or placed in a protective material (cell protector) which is biocompatible, biodegradable and has a three-dimensional form. The three dimensional form is incorporated into a matrix that maybe implanted in vivo, ultimately degrade and thereby by replaced by living cell generated material.