Abstract:
Optical fiber endfaces are fixtured across a hermetic boundary from an optical system. Beams are transmitted between the system and the endfaces through a window structure in the walls of the hermetic package. A mounting block is used to secure the endfaces to a common bench. In one embodiment, a two-dimensional lens array is used.
Abstract:
An alignment structure (100) maintains an optical fiber in a bore (113). The structure is fixed on a bench and is passively or actively aligned with a light source. Then the structure may be welded or soldered to the optical bench whereby the alignment may suffer due to heat transfer. To correct this, the alignment structure can be plastically deformed to correct the alignment after the components have been fixed. The alignment structure has a substantially constant cross section in a z-axis direction as well as flexible links in order to allow displacements orthogonal to the optical axis. This movements will be initiated by seizing the component with a micro-positioner at a handle (136) and displacing it over the elastic limit to achieve permanent deformation.
Abstract:
An optical amplifier array is integrated with a switching matrix with a tunable filter. As a result, switching and amplification can be performed in a common hermetic package, for example, thus offering advantages associated with small footprint and low cost. The optional integration of the tunable filter, with or without the switching matrix, further allows for the monitoring of the separate optical links to ensure the proper routing of signals and/or proper spectral slotting of the various channels in each of the WDM optical signals.
Abstract:
A tunable Fabry-Perot filter includes an optical cavity bounded by a stationary reflector and a deformable or movable membrane reflector. A second electrostatic cavity outside of the optical cavity includes a pair of electrodes, one of which is mechanically coupled to the movable membrane reflector. Voltage applied to the electrodes across the electrostatic cavity causes deflection of the membrane, thereby changing the length of the optical cavity and tuning the filter. The filter with the movable membrane can be formed by micro device photolithographic and fabrication processes from a semiconductor material in an integrated device structure. The membrane can include an inner movable membrane portion connected within an outer body portion by a pattern of tethers. The pattern can be such that straight or radial tethers connect the inner membrane with the outer body. Alternatively, a tether pattern with tethers arranged in a substantially spiral pattern can be used.
Abstract:
An optical monitoring system provides for out-of-band calibration. As a result, calibration can be performed simultaneously with monitoring. This can be used to accomplish faster and/or more accurate scanning. In addition, the need for complex switching and/or multiplexing capabilities can be avoided. The system comprises a signal source of an optical signal having spectrally separated channels, which are distributed within a spectral band, such as a WDM signal. A reference source generates a reference signal outside of the spectral band. A tunable filter filters the optical signal and the reference signal. A reference signal detector then detects the filtered reference signal, while an optical signal detector detects the filtered optical signal.
Abstract:
An alignment structure (100) maintains an optical fiber in a bore (113). The structure is fixed on a bench and is passively or actively aligned with a light source. Then the structure may be welded or soldered to the optical bench whereby the alignment may suffer due to heat transfer. To correct this, the alignment structure can be plastically deformed to correct the alignment after the components have been fixed. The alignment structure has a substantially constant cross section in a z-axis direction as well as flexible links in order to allow displacements orthogonal to the optical axis. This movements will be initiated by seizing the component with a micro-positioner at a handle (136) and displacing it over the elastic limit to achieve permanent deformation.
Abstract:
An optical probe for emitting and/or receiving light within a body comprises an optical fiber that transmits and/or receives an optical signal, a silicon optical bench including a fiber groove running longitudinally that holds an optical fiber termination of the optical fiber and a reflecting surface that optically couples an endface of the optical fiber termination to a lateral side of the optical bench. The fiber groove is fabricated using silicon anisotropic etching techniques. Some examples use a housing around the optical bench that is fabricated using LIGA or other electroforming technology. A method for forming lens structure is also described that comprises forming a refractive lens in a first layer of a composite wafer material, such as SOI (silicon on insulator) wafers and forming an optical port through a backside of the composite wafer material along an optical axis of the refractive lens.
Abstract:
An integrated swept wavelength optical source uses a narrowband filtered broadband signal, such as a filtered amplified spontaneous emission (ASE) signal, with an optical amplifier and tracking filter and/or self-tracking filter. This source comprises a micro optical bench, a source for generating broadband light, a first tunable Fabry Perot filter, installed on the bench, for spectrally filtering the broadband light from the broadband source to generate a narrowband tunable signal, an amplifier, installed on the bench, for amplifying the tunable signal, and possibly a second tunable Fabry Perot filter, installed on the bench, for spectrally filtering the amplified tunable signal from the amplifier. In a self-tracking arrangement, a single tunable filter both generates the narrowband signal and spectrally filters the amplified signal. In some examples, two-stage amplification is provided. The use of a single bench implementation yields a low cost high performance system.
Abstract:
A spectrometer (100)that provides the ability to combine the advantages of high resolution, compactness, ruggedness, and low-power consumption of Fabry-Perot (FP) tunable filter spectrometer (105), with the multi-channel multiplexing advantage of FT and/or grating/detector array (118,130). The key concept is to design and operate a tunable FP filter in a multiple-order condition. This filter is then followed by a "low-resolution" fixed grating, which disperses the filtered n-order signal into a preferably matched N-element detector array for parallel detection. The spectral resolution in this system is determined by the FP filter, which can be designed to have very high resolution. The N-order parallel detection scheme reduces the total integration or scan time by a factor of N to achieve the same signal to noise ratio (SNR) at the same resolution as the single channel tunable filter method.
Abstract:
A micro-optical train manufacturing process includes a step of characterizing the position of optical components (114) on an optical bench (130), typically using a metrology system. These optical components (114) are then aligned with respect to each other in a passive alignment step (250) based on data from the metrology system and optical system design information. As a result, a subsequent active align process (260) can be avoided in some situations, or if a subsequent active alignment process (260) is performed, the time required for that active alignment process (260) can be reduced because of this initial metrology-based passive alignment step (250).