Abstract:
An optical membrane device (110) and method for making such a device (110) are described. This membrane is notable in that it comprises an optically curved surface (250). In some embodiments, this curved optical surface (250) is optically concave and coated, for example, with a highly reflecting (HR) coating to create a curved mirror. In other embodiments, the optical surface is optically convex and coated with, preferably, an antireflective (AR) coating to function as a refractive or diffractive lens.
Abstract:
A micro-optical train manufacturing process includes a step of characterizing the position of optical components (114) on an optical bench (130), typically using a metrology system. These optical components (114) are then aligned with respect to each other in a passive alignment step (250) based on data from the metrology system and optical system design information. As a result, a subsequent active align process (260) can be avoided in some situations, or if a subsequent active alignment process (260) is performed, the time required for that active alignment process (260) can be reduced because of this initial metrology-based passive alignment step (250).
Abstract:
A micro-optical train manufacturing process includes a step of characterizing the position of optical components (114) on an optical bench (130), typically using a metrology system. These optical components (114) are then aligned with respect to each other in a passive alignment step (250) based on data from the metrology system and optical system design information. As a result, a subsequent active align process (260) can be avoided in some situations, or if a subsequent active alignment process (260) is performed, the time required for that active alignment process (260) can be reduced because of this initial metrology-based passive alignment step (250).