Abstract:
A heat conductive silicone grease composition is provided. The heat conductive silicone grease composition comprises: (A) a hydroxyl group-containing organopolysiloxane, and (B) a thermoconductive inorganic filler having an average particle size of 0.1˜10 micrometers.
Abstract:
A thermal interface material (13) and a semiconductor device (10) using the thermal interface material are provided. The thermal interface material is formed as a sheet, comprising a pair of cured sheets (131) and a reinforcement member (132) arranged between the cured sheets. The reinforcement member, which improves the physical strength of the thermal interface material, is made of a material chosen from the group consisting of woven copper fabric, woven copper cloth, woven stainless fabric, woven stainless cloth, and any appropriate combination of the aforementioned materials.
Abstract:
A method and apparatus for packaging semiconductor dies for increased thermal conductivity and simpler fabrication when compared to conventional semiconductor packaging techniques are provided. The packaging techniques described herein may be suitable for various semiconductor devices, such as light-emitting diodes (LEDs), central processing units (CPUs), graphics processing units (GPUs), microcontroller units (MCUs), and digital signal processors (DSPs). For some embodiments, the package includes a ceramic substrate having an upper cavity with one or more semiconductor dies disposed therein and having a lower cavity with one or more metal layers deposited therein to dissipate heat away from the semiconductor dies. For other embodiments, the package includes a ceramic substrate having an upper cavity with one or more semiconductor dies disposed therein and having a lower surface with one or more metal layers deposited thereon for efficient heat dissipation.
Abstract:
A method and apparatus for packaging semiconductor dies for increased thermal conductivity and simpler fabrication when compared to conventional semiconductor packaging techniques are provided. The packaging techniques described herein may be suitable for various semiconductor devices, such as light-emitting diodes (LEDs), central processing units (CPUs), graphics processing units (GPUs), microcontroller units (MCUs), and digital signal processors (DSPs). For some embodiments, the package includes a ceramic substrate having an upper cavity with one or more semiconductor dies disposed therein and having a lower cavity with one or more metal layers deposited therein to dissipate heat away from the semiconductor dies. For other embodiments, the package includes a ceramic substrate having an upper cavity with one or more semiconductor dies disposed therein and having a lower surface with one or more metal layers deposited thereon for efficient heat dissipation.
Abstract:
A thermal interface material is for being applied to the contact surfaces to eliminate the air interstices between the heat dissipating apparatus and the electronic component in order to improve heat dissipation of the electronic component. The thermal interface material includes pentaerythritol oleate as base oil and fillers filled in the pentaerythritol oleate for improving the heat conductivity of the thermal interface material. The pentaerythritol oleate is used for holding the fillers therein and filling the air interstices to achieve an intimate contact between the heat dissipating apparatus and the electronic component. The fillers include aluminum powders, zinc oxide powders and zinc oxide nano-particles.
Abstract:
A heat pipe (10) includes a casing (12) and a sintered powder wick (14) arranged at an inner surface of the casing. The sintered powder wick is in the form of a multi-layer structure in a radial direction of the casing and at least one layer is divided into multiple sections in a longitudinal direction of the casing, and the multiple sections have powder sizes different from each other. The sections with large-sized powders are capable of reducing the flow resistance to the condensed liquid to flow back while the sections with small-sized powders are capable of providing a satisfactory capillary force for moving the condensed liquid.
Abstract:
A method (50) for making a heat pipe (10) includes the following steps: a) providing a screen mesh (30) in the form of a multi-portion structure with at least one portion having an average pore size different from that of the other portions; b) rolling the screen mesh into a hollow column form; c) inserting the screen mesh into a hollow pipe body (22) of the heat pipe; d) sintering the screen mesh received therein at a predetermined temperature; and e) filling a working fluid into the pipe body and sealing the pipe body. The portion with large-sized pores is capable of reducing the flow resistance to a condensed fluid to flow back, whereas the portion with small-size pores is capable of providing a relatively large capillary pressure for drawing the condensed fluid from the condensing section to the evaporating section of the heat pipe.
Abstract:
A mesh-type heat pipe (10) includes a casing (12), a tube (14) located inside the casing and a screen mesh wick (16) located between the casing and the tube. The tube defines therein a plurality of through holes (142) and at least one cutout (144). The wick is held against the casing by the tube. Under the support of the tube, the wick as a whole engages closely an inner surface of the casing, thereby establishing an effective heat transfer path between the casing and a working fluid that is saturated in the wick. Meanwhile, with the cutout in the tube presented, the heat pipe incorporating such tube is easily to be bent or flattened so as to enable the heat pipe to be applicable in electronic devices with a limited mounting space for a cooling device, such as notebook computers.
Abstract:
A bearing system includes a bearing, a shaft extending in the bearing, and a layer of nano-structured coating coated on one of the bearing and the shaft. A space is formed between the bearing and the shaft, and a lubricant is filled in the space. The lubricant is made of polymer material with hydrophilic and hydropholic properties. The nano-structured coating has a high surface tension which results in the coating being capable of adsorbing the lubricant to form a layer of lubricant film between the coating and the other of the bearing and the shaft, thereby reducing possibility of direct contact between the lubricant and the other of the shaft and the bearing. Thus, loss of the lubricant is reduced to avoid contacting frication between the shaft and the bearing. Accordingly, noise generated by the bearing system is decreased and life of the bearing system is extended.
Abstract:
A thermal interface material (10) includes 100 parts by weight of a silicone oil (11) and 800˜1200 parts by weight of a metal powder (12) mixed into the silicone oil. An outer surface of each metal particle (121) of the metal powder is coated with a metal oxide layer (122). A method of producing the thermal interface material includes steps of: (1) applying a layer of organo coupling agent on the metal powder; (2) heating the metal powder at a temperature between 200 to 300° C. to coat a metal oxide layer on an outer surface of the metal powder; and (3) adding the metal powder with the coated metal oxide layer to a silicone oil. The thermal interface material has an excellent thermal conductivity and an excellent electrical insulating property.