Abstract:
Certain exemplary embodiments can provide a system, which can comprise an ultra-thin polymer ceramic composite separator. The ultra-thin polymer ceramic composite separator can comprise Li-ion conducting ceramic material. The ceramic composite separator has a columnar grained microstructure. The ultra-thin polymer ceramic composite separator can comprise a single or bi-layer combination of LiPON, LATP, garnets, lithium sulfides, or Li1+2xZr2−zCa(PO4)3.
Abstract:
Certain exemplary embodiments can provide a method, which can comprise depositing a substantially uniform coating on a substrate. The coating is deposited via a coating material stream that emanates from one or more vapor sources. The coating material stream is directed toward the substrate via a carrier gas in a chamber under vacuum.
Abstract:
Certain exemplary embodiments can provide a method, which can comprise stabilizing adherence of a ceramic layer to a bond coat of a thermal barrier coating system, via incorporation of iron and cobalt into the bond coat at a given level. The bond coat can comprise MCrAlY, wherein M is selected from the group consisting of nickel, cobalt, iron and mixtures thereof.
Abstract:
The present invention provides for a method and apparatus for the directed vapor deposition (DVD) on non-line of sight (NLOS) portions of a substrate. The method and apparatus includes evaporating a first material for deposition on to the substrate, the evaporating generating a plurality of vapor molecules. The method and apparatus therein provides for the insertion of a carrier gas and the direction of the vapor molecules to be deposited in NLOS regions of the substrate. One embodiment utilizes plasma activation to ionize the vapor particles and bias the substrate to attract the charged vapor molecules onto the NLOS portion. Another embodiment uses an inert gas as the carrier gas. Another embodiment includes pre-heating the carrier gas prior to its insertion into the deposition chamber. Whereby the varying embodiments and combinations herein improve NLOS DVD.
Abstract:
The present invention provides for a method and apparatus for the directed vapor deposition (DVD) on non-line of sight (NLOS) portions of a substrate. The method and apparatus includes evaporating a first material for deposition on to the substrate, the evaporating generating a plurality of vapor molecules. The method and apparatus therein provides for the insertion of a carrier gas and the direction of the vapor molecules to be deposited in NLOS regions of the substrate. One embodiment utilizes plasma activation to ionize the vapor particles and bias the substrate to attract the charged vapor molecules onto the NLOS portion. Another embodiment uses an inert gas as the carrier gas. Another embodiment includes pre-heating the carrier gas prior to its insertion into the deposition chamber. Whereby the varying embodiments and combinations herein improve NLOS DVD.