Abstract:
A method of calculating a climb-dive marker (CDM) that is visibly present on a display even as the aircraft approaches a roll angle of +/−90° is provided. An exemplary CDM method comprises obtaining, an X-axis velocity, a Y-axis velocity, and a Z-axis velocity in aircraft body coordinates of an aircraft; calculating a CDM elevation; and displaying, by the controller, the calculated CDM elevation. The method can further comprise obtaining an angle of attack (AoA) of the aircraft and a roll angle of the aircraft, wherein the AoA is set as the value of the CDM elevation when the roll angle is within a preset range. The CDM elevation may also be calculated using a combination of the AOA and the CDM formula when roll angle is within a second preset range.
Abstract:
At least some embodiments are a method including connecting a mobile computer system to a vehicle computer system, wherein the vehicle computer system does not include a display device. Mission control data is received from the vehicle computer system, the mission control data generated by one or more vehicle I/O sensors coupled to the vehicle computer system. The mission control data is displayed on a display device of the mobile computer system.
Abstract:
A method of processing a double sided wafer of a microelectromechanical device includes spinning a resist onto a first side of a first wafer. The method further includes forming pathways within the resist to expose portions of the first side of the first wafer. The method also includes etching one or more depressions in the first side of the first wafer through the pathways, where each of the depressions have a planar surface and edges. Furthermore, the method includes depositing one or more adhesion metals over the resist such that the one or more adhesion metals are deposited within the depressions, and then removing the resist from the first wafer. The method finally includes depositing indium onto the adhesion metals deposited within the depressions and bonding a second wafer to the first wafer by compressing the indium between the second wafer and the first wafer.
Abstract:
There is provided in a first form, an apparatus. The apparatus includes a detector array having a plurality of elements, the detector array comprising a photosensitive material and a photosensitive region disposed about and distinct from the plurality of elements. Electrical circuitry is coupled to each of the elements of the detector array. The electrical circuitry is configured to generate a set of first signals, each first signal of the set of first signals is based on optical energy impinging on a respective one of the plurality of elements of the detector array. The photosensitive region is coupled to the electrical circuitry and the electrical circuitry is configured to generate a second signal having a first value if no portion of optical energy impinging on the plurality of elements of the detector array impinges on the region disposed about the plurality of elements of the detector array. The second signal has a second value, distinct from the first value, if a portion of an optical energy impinging on the plurality of elements of the detector array impinges on the photosensitive region disposed about the plurality of elements of the detector array, the portion of the optical energy impinging on the photosensitive region disposed about the plurality of elements exceeds a threshold energy.
Abstract:
A method for detecting light sources. The method includes capturing an image including a sub-infrared light emitter, applying a filter to a pixel of the captured image to isolate a signal strength of a range of frequencies, and comparing the signal strength of the filtered pixel to an expected signal strength of a background spectra for the range of frequencies. As a result of a difference between the signal strength of the filtered pixel and the expected signal strength exceeding a predetermined threshold, the method includes identifying the pixel as corresponding to a light emitter. As a result of the difference between the signal strength of the filtered pixel and the expected signal strength not a predetermined threshold, the method includes identifying the pixel as not corresponding to a light emitter.
Abstract:
The present disclosure relates to hermetic sealing of a device within a package or assembly. The sealable device is preferably a MEMS device. Surrounding the device is a first seal member that defines an internal cavity. The device can be positioned within the internal cavity, the extents of which defines a first seal region. A second seal member, and possibly others, is preferably positioned outside of the first seal member. The second seal member surrounds the first seal member a spaced distance from the first seal member to define a second seal region. Getter material is preferably placed within the first and second seal regions, and the first and second seal regions are sealed under vacuum pressure to provide a MEMS packaged assembly having a relatively low leak rate.
Abstract:
A night vision system along with an image intensifier tube and method for forming the tube are provided. The night vision system incorporates the image intensifier tube in both an analog channel as well as a digital channel, with an addressable display within the analog image intensifier tube analog channel configured to create an electronically addressable output. An analog image intensifier tube is included in the digital imager for presenting binary digital signals representative of an image, or of symbol indicia, and registering those digital representation from the digital imager onto one or more electron multipliers of the analog image intensifier tube within the analog channel. The provided night vision system also utilizes a cathodoluminescent screen, which is a highly efficient light source that reduces system power.
Abstract:
A method of calculating a climb-dive marker (CDM) that is visibly present on a display even as the aircraft approaches a roll angle of +/- 90° is provided. An exemplary CDM method comprises obtaining, an X-axis velocity, a Y-axis velocity, and a Z-axis velocity in aircraft body coordinates of an aircraft; calculating a CDM elevation; and displaying, by the controller, the calculated CDM elevation. The method can further comprise obtaining an angle of attack (AoA) of the aircraft and a roll angle of the aircraft, wherein the AoA is set as the value of the CDM elevation when the roll angle is within a preset range. The CDM elevation may also be calculated using a combination of the AOA and the CDM formula when roll angle is within a second preset range.
Abstract:
A method for detecting light sources. The method includes capturing an image including a sub-infrared light emitter, applying a filter to a pixel of the captured image to isolate a signal strength of a range of frequencies, and comparing the signal strength of the filtered pixel to an expected signal strength of a background spectra for the range of frequencies. As a result of a difference between the signal strength of the filtered pixel and the expected signal strength exceeding a predetermined threshold, the method includes identifying the pixel as corresponding to a light emitter. As a result of the difference between the signal strength of the filtered pixel and the expected signal strength not a predetermined threshold, the method includes identifying the pixel as not corresponding to a light emitter.
Abstract:
An apparatus. The apparatus includes a detector array having a plurality of elements, and a photosensitive region disposed about the plurality of elements. Circuitry coupled the elements of the detector array is configured to generate a set of first signals based on optical energy impinging on a respective one of the plurality of elements of the detector array. Circuitry coupled to the photosensitive region is configured to generate a second signal having a first value if no portion of optical energy impinging on the plurality of elements of the detector array impinges on the region disposed about the elements of the detector array. The second signal has a second value if a portion of an optical energy impinging on the plurality of elements of the detector array impinges on the photosensitive region disposed about the elements of the detector array and the portion exceeds a threshold energy.