Abstract:
A method for coating a substrate surface by PECVD is provided, the method comprising generating a plasma from a gaseous reactant comprising an organosilicon precursor and optionally O2. The lubricity, hydrophobicity and/or barrier properties of the coating are set by setting the ratio of the O2 to the organosilicon precursor in the gaseous reactant, and/or by setting the electric power used for generating the plasma. In particular, a lubricity coating made by said method is provided. Vessels coated by said method and the use of such vessels protecting a compound or composition contained or received in said coated vessel against mechanical and/or chemical effects of the surface of the uncoated vessel material are also provided.
Abstract:
A method for coating a substrate surface by PECVD is provided, the method comprising generating a plasma from a gaseous reactant comprising an organosilicon precursor and optionally O2. The lubricity, hydrophobicity and/or barrier properties of the coating are set by setting the ratio of the O2 to the organosilicon precursor in the gaseous reactant, and/or by setting the electric power used for generating the plasma. In particular, a lubricity coating made by said method is provided. Vessels coated by said method and the use of such vessels protecting a compound or composition contained or received in said coated vessel against mechanical and/or chemical effects of the surface of the uncoated vessel material are also provided.
Abstract:
A coated object, wherein at least a portion of the surface of the object is an amide containing polymer wherein at least a portion of a surface of the amide containing polymer has a plasma enhanced chemical vapor deposition exposed coating thereon. A method for making a coated object, wherein at least a portion of the surface of the object comprises an amide containing polymer, by the step of coating at least a portion of a surface of the polymer containing an amide group by a plasma enhanced chemical vapor deposition coating process to form a plasma enhanced chemical vapor deposition exposed coating thereon.
Abstract:
A medical device comprising a wall, a coating of SiOx, and a piezochromic material is disclosed. The piezochromic material is associated with the wall, and changes its appearance when the wall is exposed to mechanical stress exceeding a threshold intensity. Also disclosed is a method of interrogating a closed medical device for processing damage, comprising at least the acts of providing a closed medical device and inspecting the medical device. The medical device is inspected from the exterior for a change in the appearance of at least some of its piezochromic material that is characteristic of exposure of the wall to mechanical stress exceeding a threshold intensity greater than zero. Optionally in any embodiment inspecting is carried out using a spectrophotometer to determine the change in the color of at least some of its piezochromic material.
Abstract:
A method for inspecting the product of a coating process is provided. In certain embodiments, the release of at least one volatile species from the coated surface into the gas space adjacent to the coated surface is measured and the result is compared with the result for at least one reference object measured under the same test conditions. Microbalance weighing methods are also disclosed to detect and distinguish among PECVD coatings. Thus the presence or absence of the coating, and/or a physical and/or chemical property of the coating can be determined. The method is useful for inspecting any coated articles, e.g. vessels. Its application on the inspection of PECVD coatings made from organosilicon precursors, especially of barrier coatings, is also disclosed.
Abstract:
A method for inspecting the product of a coating process is provided. Therein, the release of at least one volatile species from the coated surface into the gas space adjacent to the coated surface is measured and the result is compared with the result for at least one reference object measured under the same test conditions. Thus the presence or absence of the coating, and/or a physical and/or chemical property of the coating can be determined. The method is useful for inspecting any coated articles, e.g. vessels. Its application on the inspection of PECVD coatings made from organosilicon precursors, especially of barrier coatings, is also disclosed.
Abstract:
A method for inspecting the product of a coating process is provided. Therein, the release of at least one volatile species from the coated surface into the gas space adjacent to the coated surface is measured and the result is compared with the result for at least one reference object measured under the same test conditions. Thus the presence or absence of the coating, and/or a physical and/or chemical property of the coating can be determined. The method is useful for inspecting any coated articles, e.g. vessels. Its application on the inspection of PECVD coatings made from organosilicon precursors, especially of barrier coatings, is also disclosed.
Abstract:
A plasma enhanced chemical vapor deposition (PECVD) apparatus for coating an interior surface of a vessel is provided, the apparatus comprising a vessel holder comprising a vessel port configured to receive and seat a first opening of the vessel for processing the interior surface of the seated vessel via the vessel port, an inner electrode for being arranged within an interior space of the seated vessel, an outer electrode having an interior portion for receiving the seated vessel, and a power supply to create a plasma within the vessel, wherein the seated vessel and vessel holder are adapted for defining a plasma reaction chamber.
Abstract:
The present invention pertains to absorbent polymer composition comprising A) one or more sulfonated substantially random interpolymers comprising repeating units derived from; f) ethylene and/or one or more alpha olefins; g) one or more sulfonated vinyl or vinylidene aromatic monomers; h) one or more vinyl or vinylidene aromatic monomers, or a combination of one or more vinyl or vinylidene aromatic monomers and one or more sterically hindered aliphatic or cycloaliphatic vinyl or vinylidene monomers; and optionally B) one or more polymers other than said sulfonated substantially random interpolymer. Uses of the compositions include the preparation of absorbent foams, fibers films and membranes for the preparation of absorbent articles for personal hygiene. These include diapers, sanitary napkins adult incontinence pads, and highly absorbent wipes, and dust pickups.