Abstract:
Provided is a method for swell effect and mis-tie correction in high-resolution marine seismic data using multi-beam echo sounder data, and more particularly, a method for swell effect and mis-tie correction in high-resolution marine seismic data using multi-beam echo sounder data capable of acquiring the high-resolution marine seismic data having the swell effect and the mis-tie effectively corrected by using the multi-beam echo sounder data including water depth data of a sea-bottom having high precision.
Abstract:
Disclosed herein is a test apparatus for early landslide detection fully-connected with pore water pressure, surface displacement and shear surface. The test apparatus calculates a factor of safety of a slope based on variation in pore water pressure, surface displacement and shear surface of a soil mass, and predicts a change in factor of safety, thus making early landslide detection possible. In the test apparatus, while a container of a slider is moved with a soil mass loaded into the container, shear surface and surface displacement environment is provided, and the shear strength and the shear stress of the soil mass can be calculated based on the pore water pressure and the weight of the soil mass. Thereby, the factor of safety of the soil mass can be calculated, and early landslide detection can be realized by using variation of the factor of safety of the slope.
Abstract:
Provided is a dry separation apparatus including: a main body; a first deck; a plurality of guides; a supply part; an air blow fan; and a vibration part. A dry separation method includes: supplying an object to be separated to a top surface of a first deck provided with a plurality of punches; sending, by an air blow fan, air to the punches (first punches); and horizontally vibrating, by a vibration part, the first deck so as to discharge particles which have different specific gravities of the object to be separated and a moveable force exerted by air passing the first punches through different passages.
Abstract:
Capsules comprising crumpled graphene sheets that form a crumpled graphene shell encapsulating an internal cargo comprising nanostructures of a second component are provided. Also provided are anode materials for lithium ion batteries comprising the capsules, wherein the nanostructures are composed of an electrochemically active material, such as silicon.
Abstract:
Provided is elastic reverse-time migration system and method using an absolute value function for improving the quality of subsurface structure images, and more particularly, elastic reverse-time migration system and method using an absolute value function for improving the quality of subsurface structure images capable of minimizing waveform changing by separating wavefields using stress-displacement relationships and improving accuracy of the subsurface structure images by applying the absolute value function to migration images.
Abstract:
The present invention relates to a method for recovering vanadium and tungsten from a leach solution of a waste denitrification catalyst, and more specifically, to a method for recovering vanadium and tungsten from a leach solution of a waste denitrification catalyst comprising the steps of: recovering vanadium by adding acid and then adding a calcium compound to a leach solution of a waste denitrification catalyst to precipitate the vanadium; and recovering tungsten by adding acid and then adding a calcium compound to the remaining leach solution after recovering the vanadium to precipitate the tungsten.
Abstract:
The present invention relates to a device for recovering lithium included in a solution such as sea water, and to a sea water lithium-recovery device and a lithium-recovery station using coastal-water-based lithium-adsorption equipment and shore-based lithium-isolation equipment and a lithium desorption device using aeration.
Abstract:
The present invention relates to a coring system and a determining method that can determine whether accurate coring was achieved. A coring system according to the present invention includes: a coring part with a core to be filled with an object to be cored; a driving unit controlling upward/downward movement of the coring part; a rope connecting the coring part with the driving unit; and a tensiometer measuring tension in the rope.
Abstract:
Disclosed is a method and apparatus for measuring in-situ stress in rock using a thermal crack. The method involves forming a borehole, cooling a wall of the borehole, applying tensile thermal stress, forming a crack in the borehole wall, and measuring temperature and cracking point. Afterwards, the borehole wall is heated to close the formed crack, the borehole wall is cooled again to re-open the crack, and temperature is measured when the crack is re-opened. The in-situ stress of the rock is calculated using a first cracking temperature at which the crack is formed and a second cracking temperature at which the crack is re-opened. Further, the apparatus cools, heats and re-cools the borehole wall, thereby measuring the first cracking temperature, the second cracking temperature, and the cracking point.