Abstract:
A method for synthesizing high purity montmorillonite is disclosed. According to this synthesis method, bentonite is dissolved in aqua regia to produce a solution and then sodium hydroxide (NaOH) is added to the solution to produce a mixed solution. Then, the mixed solution is kept in a sealed state at a temperature of 90° C. inclusive to 100° C. exclusive to synthesize montmorillonite crystals.
Abstract:
The present invention relates to an apparatus and method for analyzing underground geophysical properties using the principle of a ground-penetrating radar. In order to resolve problems of the ground-penetrating radar (GPR) techniques of the related art which mainly acquires an underground image using electric field reflected waves and excludes acquisition of an underground image using magnetic field reflected waves, the present invention provides a system for exploring underground geophysical properties and a method for analyzing underground geophysical properties using the same, the system including: a transmission antenna which is located in a specific spot on the ground and radiates an electromagnetic pulse signal; and a pair of reception antennae which measures an electric field signal and a magnetic field signal which are generated by the radiated signal, in which the system is configured to be able to acquire not only underground images using electric field reflected waves as in technology of the related art but also underground images using magnetic field reflected waves, thereby exploring underground geophysical properties more accurately and effectively than conventional technology.
Abstract:
Disclosed herein is a test apparatus for early landslide detection fully-connected with pore water pressure, surface displacement and shear surface. The test apparatus calculates a factor of safety of a slope based on variation in pore water pressure, surface displacement and shear surface of a soil mass, and predicts a change in factor of safety, thus making early landslide detection possible. In the test apparatus, while a container of a slider is moved with a soil mass loaded into the container, shear surface and surface displacement environment is provided, and the shear strength and the shear stress of the soil mass can be calculated based on the pore water pressure and the weight of the soil mass. Thereby, the factor of safety of the soil mass can be calculated, and early landslide detection can be realized by using variation of the factor of safety of the slope.
Abstract:
Provided is an underwater holding-type lithium recovering apparatus 1000 including: an underwater holder 100 installed on an offshore sea bed; a lithium adsorbent 200 held in the underwater holder 100 and adsorbing lithium ions contained in seawater; a moving ship 300 installed with a cleaning tank 320 cleaning the lithium adsorbent 200 transferred from the underwater holder 100 and a desorbing tank 330 desorbing lithium ions adsorbed in the lithium adsorbent 200 transferred from the cleaning tank 320, and moved to a coastline when lithium ions of a reference value or more are filled in the desorbing tank 330; and a transfer pump 400 transferring lithium ions filled in the desorbing tank 330 to a reservoir 500 installed at the coastline.
Abstract:
Borehole electromagnetic exploration or tomography (EM tomography). An induction type broadband 3-component borehole magnetic measuring sensor can accurately and precisely measure a broadband magnetic field about x, y and z axes using a three-dimensional (3D) model within a borehole by monitoring natural variations in the earth's magnetic field or based on EM tomography using the borehole. The measuring sensor is applicable to energy resource fields such as petroleum and coal, mineral resources fields and civil engineering and environmental fields.
Abstract:
Disclosed is an inline separator for separating well fluid or gas-dominant fluid using centrifugal force. The inline separator includes: an outer pipe provided with an inlet; a vortex-generating rotor installed in the outer pipe; a fixed extraction pipe having an external diameter smaller than an internal diameter of the outer pipe and installed in the outer pipe at a downstream side of the vortex-generating rotor; a movable extraction pipe connected to an end of the fixed extraction pipe, close to the vortex-generating rotor, and having an extendable and retractable structure such that a position of an introduction hole of the movable extraction pipe is changeable; a pressure compensation pipe that applies pressure to oil or gas separated in a downstream end of the fixed extraction pipe; and a seawater discharge pipe connected to a portion of the outer pipe at which the fixed extraction pipe is disposed.
Abstract:
The present invention relates to an apparatus and method of measuring effective porosity of various media such as rock or soil using radon that is an inert gas. An apparatus of measuring porosity according to the present invention includes: a gas component detector having two ports and configured to measure a concentration of a predetermined gas; a gas vessel having two ports and configured to accommodate the predetermined gas; a medium vessel having two ports and configured to accommodate a medium, of which the porosity is desirous to be measured; pipe lines connecting the ports of the gas component detector, the gas vessel and the medium vessel; and valves installed on the pipe lines.
Abstract:
The present invention provides a method of separating and recovering iron from a waste non-ferrous slag, generated in a process for smelting of non-ferrous metals, including copper, zinc and lead, in which a reducing agent and a reaction catalyst are added to the crushed waste non-ferrous slag, and the mixture is subjected to a reduction reaction, thereby converting amorphous iron oxides, bound to alumina, calcium oxide, magnesium oxide, silica, and the like in the waste non-ferrous slag, to crystalline iron (Fe) and iron carbide (Fe2C); the resulting material is crushed to separate iron and iron carbide obtained by the reduction reaction from components such as alumina, calcium oxide, magnesium oxide, silica, and the like; the crushed material is separated into fractions by particle size; and the fractions are subjected to wet magnetic separation and dry magnetic separation to separate and recover magnetic iron concentrates from the fractions.
Abstract:
A method of recycling a by-product generated in a papermaking process including, pulverizing a by-product produced in a papermaking process to prepare a pulverized product, burning the pulverized product to prepare a burned product, hydrating the burned product to prepare a hydrate; and manufacturing paper from the hydrate and a paper slurry is provided, which allows reuse of by-products generated in conventional papermaking processes such as lime mud and lime kiln CaO, which is environmentally friendly as well as cost-effective, and also the level of whiteness of the by-products such as lime mud and lime kiln CaO generated in a papermaking process can be improved to that of a high-grade raw material, making it possible to also improve the whiteness of paper.
Abstract:
The present invention relates to a method of simultaneously recovering cobalt (Co) and manganese (Mn) from lithium-based BATTERY, and more particularly, to a method that is capable of simultaneously recovering cobalt and manganese from lithium-based BATTERY, i.e., recycled resources that contain large amounts of cobalt and manganese, with high purities using multistage leaching and electrowinning methods. According to the method of the present invention, cobalt and manganese can be simultaneously recovered from lithium-based BATTERY as recycled resources, and a recovery method that is cost-effective compared to conventional methods can be provided.