Abstract:
A metallic positive expulsion fuel tank with stress free weld seams may include a first hemispherical shell with a first edge; a pressurized gas inlet attached to the first hemispherical shell; and a metallic cylinder with first and second edges attached to the first hemispherical shell along matching first edges by a first weld seam. The tank may also include a second hemispherical shell with a first edge attached to a fuel outlet fixture. An elastomeric diaphragm may be attached to the fuel outlet fixture on the second hemispherical shell. The second hemispherical shell may be attached to the second edge of the metallic cylinder along matching edges by a second weld seam thereby forming a positive expulsion fuel tank with two interior chambers separated by the elastomeric diaphragm. The first and second weld seams may be subjected to a localized post-weld stress relief heat treatment in which heating of the tank is confined to a distance of 2 inches (5.08 cm) of the first weld seam and a distance of 2 inches (5.08 cm) of the second weld seam such that the stresses in the first and second weld seams are relieved and the elastomeric diaphragm is unaffected by the heat treatment.
Abstract:
A thin wall spinformed metallic tank shell includes a first region with a first thickness and at least one second region with a second thickness greater than the first thickness including structural features formed by an additive manufacturing process, where the features are added outside and inside of the metallic tank shell and can include: polar bosses added to one or both external polar regions of a spherical section of the tank; mounting tabs on a circumferential skirt of the tank; mounting rings containing threaded holes attached to the interior or exterior surface of the tank; mounting trunnions attached to the external surface of the tank; propellant management devices attached to the interior surface of the tank; structural reinforcement vanes and ribs attached to the inside surface of the tank; and brackets and/or shelves attached to the inside surface of the tank.
Abstract:
A method of performing a localized post weld heat treatment on a weld seam in a thin wall metallic body may include attaching thermocouples to the outside surface of the weld seam and covering the weld seam with a thermal insulating blanket. Cooling bands are attached to the outside of the body on both sides of the weld seam. An inert atmosphere enclosure with inlet and exhaust ports is fitted over the weld seam, thermal insulating blanket, and cooling bands. A power supply and control system for an induction coil or coils situated in close proximity to the weld seam are actuated and the weld seam is subjected to a heat treatment without thermally affecting regions of the metallic body adjacent to the weld seam and external to the cooling bands.
Abstract:
A method of performing a localized post weld heat treatment on a weld seam in a thin wall metallic body may include attaching thermocouples to the outside surface of the weld seam and covering the weld seam with a thermal insulating blanket. Cooling bands are attached to the outside of the body on both sides of the weld seam. An inert atmosphere enclosure with inlet and exhaust ports is fitted over the weld seam, thermal insulating blanket, and cooling bands. A power supply and control system for an induction coil or coils situated in close proximity to the weld seam are actuated and the weld seam is subjected to a heat treatment without thermally affecting regions of the metallic body adjacent to the weld seam and external to the cooling bands.
Abstract:
A demisable fuel supply system for a satellite includes a pressurized aluminum alloy tank (12) with an aluminum alloy propellant management device therein. The propellant management device (PMD) can have any capillary action surface tension fluid transport features known in the art. Selected inner surfaces of the tank (12) and the PMD are covered with a plasma powder sprayed titanium based coating to guarantee propellant wettability and corrosion resistance of the fuel supply system.
Abstract:
A demisable fuel supply system for a satellite includes a pressurized aluminum alloy tank (12) with an aluminum alloy propellant management device therein. The propellant management device (PMD) can have any capillary action surface tension fluid transport features known in the art. Selected inner surfaces of the tank (12) and the PMD are covered with a plasma powder sprayed titanium based coating to guarantee propellant wettability and corrosion resistance of the fuel supply system.
Abstract:
A demisable fuel supply system for a satellite includes a pressurized aluminum alloy tank (12) with an aluminum alloy propellant management device therein. The propellant management device (PMD) can have any capillary action surface tension fluid transport features known in the art. Selected inner surfaces of the tank (12) and the PMD are covered with a plasma powder sprayed titanium based coating to guarantee propellant wettability and corrosion resistance of the fuel supply system.