Abstract:
Position sensor for a mechanical device, comprising: at least one optical emitter (2), which is arranged for projecting an incident radiation (RI) on a positioning track (107) made on a movable member of the mechanical device and provided with multiple optical sections (108, 109) with different optical contrast; at least one optical detector (3), which is arranged for detecting a reflected radiation (RF) coming from the positioning track (107) and for generating a corresponding measurement signal (SM); an electronic processing unit (4), which is operatively connected to the optical detector (3) in order to receive the measurement signal (SM) and is arranged for calculating, on the basis of such measurement signal (SM), a reflectance value (VR) indicative of the reflectivity of the zone of the positioning track (107) hit by the incident ray (RI) so as to distinguish the different optical sections (108, 109) of the positioning track (107) itself. The position sensor also comprises a signaling module (9) operatively associated with the electronic processing unit (4) and arranged for sending a warning signal (SA) as a function of the reflectance value (VR), so as to provide to the user indications relative to the level of deterioration of the optical sections (108, 109) of the positioning track (107).
Abstract:
A radiation concentrating device, comprising a substantially parabolic mirror, which is adapted to reflect the energy radiation or electromagnetic radiation that reaches it so as to converge toward an active area of a receiving element arranged in front, the active area being interposed between the focal point of the mirror and the mirror itself, the mirror and the receiving element being fixed by way of coupling elements to a same base. The transverse dimension of the active area is smaller than the transverse dimension of the mirror arranged in front. The base is preset to support a plurality of parabolic mirrors and corresponding receiving elements, which are mutually connected by conductors.
Abstract:
A method for detecting the reciprocal position between a cylinder and a piston in a cylinder-piston unit, including the following phases: setup of a cylinder-piston unit featuring at least one tubular body (2) presenting at least one passing accommodation host (6); at least one moving body (5) which can be longitudinally shifted in such tubular body (2), featuring at least one reference area (5c) extending for a portion (5d) on the surface of such moving body (5); at least means of detection (7) which can be accommodated in such passing accommodation host (6), oriented towards such moving body (5) and meant to detect the presence or absence of such reference area (5c) at one of their detection area (7c), and to generate at least one corresponding output electrical signal (s7), as a response to the possible detection of such reference area (5c); at least one elaboration and program control unit (8), meant to receive as an input at least one of such output electrical signals (s7) and to generate as an output at least one electrical signal (s8) of detection; activation of such detection means (7) (phase 100); elaboration by at least one of such elaboration and program control units (8) of at least one of such signals (s7) which are the output of such detection means (7) (phase 200), with such elaboration phase including a comparison (phase 220) between at least one of such output electrical signals (s7) and the respective maximum and minimum reference thresholds (Smax, Smin); generation, based on such elaboration (phase 200), of a electrical signal of detection (s8) by at least one of such elaboration and program control units (8) (phase 300); such maximum and minimum reference thresholds (Smax, Smin) being periodically updated.
Abstract:
A cylinder-piston unit including: at least one cylinder including a tubular body (2); at least one piston (5) liable with a respective rod (5a), said piston (5) and said rod (5a) being translatable longitudinally in said tubular body (2) of said cylinder, at least one reference codification (C) extending for at least a section (dC) on the surface of said rod (5a), along the longitudinal axis of the same; at least detecting means (7), movable anchorable to said tubular body (2), faced, in use, towards said rod (5a) and suitable to detect said at least one reference codification (C) and to emit at the output at least a corresponding output electrical signal (s7), at least a reference zone (7c) of amplitude (d7c) delimited from said detecting means (7), said at least one reference codification (C) being detectable in correspondence to said at least one detection zone (7c); said at least one reference codification (C) including at least one plurality of adjacent sectors ( . . . , Si−1, Si, Si+1, . . . ) extending along said longitudinal axis of said rod (5a), each of them for a section (dSi) of equal length; each sector (Si) includes a plurality of optical contrast zones (si1, si2, si3), each of them extending along said longitudinal axis of said rod (5a) for a respective section of extension (dsi1, dsi2, dsi3) such as the sum of the extensions of said sections of extensions (dsi1+dsi2 . . . ), in each sector (Si) is lower or equal to said amplitude (d7c) of said detecting zone (7c); said optical contrast zones (si1, si2, si3) being arranged in each sector (Si) according to the same sequence; and wherein in each sector (Si) at least one optical contrast zone (si1, si2, si3) shows said at least one respective section of extension (ds1, ds2, ds3) of different length compared to the length of the same section of extension in the other sectors (Si−2, Si−1, Si+1, Si+2, . . . ), therefore each sector (Si) remains univocally definable from the length of said at least one section of extension (dsi1, dsi2, dsi3) of said optical contrast zones (si1, si2, si3) in it included.
Abstract:
It's disclosed a kit for detecting a micro-RNA of interest in at least one sample (C) extracted from a body fluid, comprising: at least one device (2) including a housing casing (2a) in which at least one housing seat (2b) is obtained for said at least one sample (C), and at least one opening (2c) through which said housing seat (2b) is accessible from the outside; at least one container means (3) for said at least one sample (C), said at least one container means (3) being insertable/disconnectable in/from said housing seat (2b) through said at least one opening (2c); at least one optical excitation group (5), housed in said housing casing (2a), designed to emit at least one excitation light radiation (λ, λ1 ) towards said at least one housing seat (2b); at least one detection group (6), designed to detect at least one emission light radiation (λ2), that can be generated, in use, by said at least one sample (C), said at least one sample (C) being optically excitable by said at least one excitation light radiation (λ, λ1) emitted by said at least one optical excitation group (5), said at least one detection group (6) being designed to supply at least one electric output signal (SO- signal output) correlated with the quantity, in said at least one sample (C), of said micro-RNA of interest; at least one processing unit (7) designed to receive and process said at least one electric signal (SO) and to output an index correlated with the quantity of said micro-RNA of interest in said at least one sample (C); said at least one container means (3) being made of a material permeable to said at least one excitation light radiation (λ, λ1) and to said at least one emission light radiation (A2); said at least one group (6) for detecting said emission light radiation (A2) comprises at least one sensor means (6a) of silicon photomultiplier type.
Abstract:
A radiation concentrating device, comprising a substantially parabolic mirror, which is adapted to reflect the energy radiation or electromagnetic radiation that reaches it so as to converge toward an active area of a receiving element arranged in front, the active area being interposed between the focal point of the mirror and the mirror itself, the mirror and the receiving element being fixed by way of coupling elements to a same base. The transverse dimension of the active area is smaller than the transverse dimension of the mirror arranged in front. The base is preset to support a plurality of parabolic mirrors and corresponding receiving elements, which are mutually connected by conductors.