Abstract:
It's disclosed a kit for detecting a micro-RNA of interest in at least one sample (C) extracted from a body fluid, comprising: at least one device (2) including a housing casing (2a) in which at least one housing seat (2b) is obtained for said at least one sample (C), and at least one opening (2c) through which said housing seat (2b) is accessible from the outside; at least one container means (3) for said at least one sample (C), said at least one container means (3) being insertable/disconnectable in/from said housing seat (2b) through said at least one opening (2c); at least one optical excitation group (5), housed in said housing casing (2a), designed to emit at least one excitation light radiation (λ, λ1 ) towards said at least one housing seat (2b); at least one detection group (6), designed to detect at least one emission light radiation (λ2), that can be generated, in use, by said at least one sample (C), said at least one sample (C) being optically excitable by said at least one excitation light radiation (λ, λ1) emitted by said at least one optical excitation group (5), said at least one detection group (6) being designed to supply at least one electric output signal (SO- signal output) correlated with the quantity, in said at least one sample (C), of said micro-RNA of interest; at least one processing unit (7) designed to receive and process said at least one electric signal (SO) and to output an index correlated with the quantity of said micro-RNA of interest in said at least one sample (C); said at least one container means (3) being made of a material permeable to said at least one excitation light radiation (λ, λ1) and to said at least one emission light radiation (A2); said at least one group (6) for detecting said emission light radiation (A2) comprises at least one sensor means (6a) of silicon photomultiplier type.
Abstract:
Device for detecting biomolecules, comprising a container (2) intended to be filled with a mixture comprising a biomolecule (30) to be detected, a reagent (4) bondable to the biomolecule (30) and susceptible of emitting a first light radiation (λ 1 ) in fluorescence or chemiluminescence, and a plurality of magnetic beads (41) chemically bondable to the biomolecule (30). The device comprises a first detector (71) for detecting the first light radiation (λ 1 ) for detecting the biomolecule (30) concentration (C), a first emitter (61) for emitting a second light radiation (λ 2 ) for irradiating the magnetic beads (41), and a second detector (72) for detecting a third light radiation (λ 3 ) consequently transmitted, reflected or emitted by the magnetic beads (41) for detecting the quantity of magnetic beads (41). The device also comprises a logic control unit (8) configured for calculating a correct concentration (C) value of biomolecule (30) on the basis of the above measurements of the light radiations (λ 1 , λ 3 ).
Abstract:
It's disclosed a kit for detecting a micro-RNA of interest in at least one sample (C) extracted from a body fluid, comprising: at least one device (2) including a housing casing (2a) in which at least one housing seat (2b) is obtained for said at least one sample (C), and at least one opening (2c) through which said housing seat (2b) is accessible from the outside; at least one container means (3) for said at least one sample (C), said at least one container means (3) being insertable/disconnectable in/from said housing seat (2b) through said at least one opening (2c); at least one optical excitation group (5), housed in said housing casing (2a), designed to emit at least one excitation light radiation (λ, λ1 ) towards said at least one housing seat (2b); at least one detection group (6), designed to detect at least one emission light radiation (λ2), that can be generated, in use, by said at least one sample (C), said at least one sample (C) being optically excitable by said at least one excitation light radiation (λ, λ1) emitted by said at least one optical excitation group (5), said at least one detection group (6) being designed to supply at least one electric output signal (SO- signal output) correlated with the quantity, in said at least one sample (C), of said micro-RNA of interest; at least one processing unit (7) designed to receive and process said at least one electric signal (SO) and to output an index correlated with the quantity of said micro-RNA of interest in said at least one sample (C); said at least one container means (3) being made of a material permeable to said at least one excitation light radiation (λ, λ1) and to said at least one emission light radiation (A2); said at least one group (6) for detecting said emission light radiation (A2) comprises at least one sensor means (6a) of silicon photomultiplier type.