Abstract:
A conformal retro-modulator optical apparatus. The apparatus includes an array of multiple quantum well devices disposed in a thin array. A plastic support element is bonded to the thin array, the plastic support element having a thickness greater that of the thin array. The plastic support element is preferably plastic at elevated temperatures above room temperature, thereby allowing the plastic support element and the thin array of multiple well device disposed therein to conform to a predetermined shape, yet being rigid at room temperature.
Abstract:
A photo-EMF sensor and a method of making same has a substrate with a semiconducting layer; a plurality of sensing regions in the layer, each sensing region including (i) a pair of electrodes disposed in, on or above the layer and (ii) an active region in the layer disposed adjacent said pair of electrodes; and a plurality of inactive regions in said the arranged between adjacent sensing regions. The inactive regions and the sensing regions are dosed with a desensitizing agent, the inactive regions receiving a relatively higher dose of the desensitizing agent and the sensing regions receiving a relatively lower dose of the desensitizing agent. The active layer is preferably placed in a monolithic Fabry-Perot cavity to enhance the optical efficiency and performance of the sensor.
Abstract:
In a method and apparatus for converting optical wavelength division multiplexed channels to wireless channels, the information carrying optical carriers are first de-multiplexed and each optical carrier is then extracted from the data using an optical channelizing technique. The optical frequency of each of the extracted optical carriers is then shifted by an amount equal to the desired wireless carrier frequencies in the broadband wireless channels. Optical heterodyning of the frequency-shifted extracted lightwave carriers with the original data-containing optical signals, which are mutually in phase coherence, in a photodetector results in a set of wireless carriers each modulated with the data carried by the corresponding optical channel.
Abstract:
A optical phased array device for optical beams with general polarization. A reflective embodiment of the inventive optical phased array interposes a quarter-wave plate between a linearly polarized liquid crystal layer and a mirror. A controllable voltage applied across the liquid crystal layer causes a first linearly polarized component of an incident optical beam to be phase shifted when it passes through the liquid crystal layer. The polarization of the optical beam is rotated by 90E when it travels through the quarter-wave plate, is reflected from the mirror, and travels back through the quarter-wave plate. The second linearly polarized component of the optical beam, orthogonal to the first, is phase shifted when it passes back through the liquid crystal layer. A transmissive embodiment of the inventive optical array interposes a half-wave plate between two linearly polarized liquid crystal layers. The first linearly polarized component is phase shifted by the first liquid crystal layer and the second component, orthogonal to the first, is phase shifted by the second layer.
Abstract:
A compact sensor for detection of chemical and/or biological compounds in low concentration. The sensor comprises electro-magnetic microcavities. The agent to be detected passes the microcavities, is absorbed and/or absorbed by the microcavities, and modifies the electromagnetic field inside the microcavities. After the agent has been adsorbed and/or absorbed, a probe beam is applied to the microcavities. The change of electromagnetic field is detected by the detector, and the frequency of the probe beam at which the resonance is observed, is indicative of a particular agent being present. A method for detecting chemical and/or biological compounds using the sensor.
Abstract:
An optical frequency modulated transmitter includes a plurality of separately phased-controlled slave lasers, the outputs of which are combined to form a single output beam of the transmitter. A master optical oscillator outputs an optical signal for injection locking the plurality of slave lasers, the optical signal being frequency modulated directly in the master optical oscillator or externally thereof. Additionally, a method of frequency modulating an optical beam is disclosed using a plurality of slave lasers. Each of the slave lasers has an output, the outputs of which are combined to form the optical beam. The plurality of slave lasers is injection locked to an optical output of a master oscillator. The optical output of the master oscillator is frequency modulated before the optical output is applied to the plurality of lasers. Each slave laser of the plurality is phased controlled relative to other slave lasers of the plurality.
Abstract:
A optical phased array device for optical beams with general polarization. A reflective embodiment of the inventive optical phased array interposes a quarter-wave plate (230) between a linearly polarized liquid crystal layer (210) and a mirror (240). A controllable voltage applied across the liquid crystal layer causes a first linearly polarized component of an incident optical beam to be phase shifted when it passes through the liquid crystal layer. The polarization of the optical beam is rotated by 90E when it travels through the quarter-wave plate, is reflected from the mirror, and travels back through the quarter-wave plate. The second linearly polarized component of the optical beam, orthogonal to the first, is phase shifted when it passes back through the liquid crystal layer. A transmissive embodiment of the inventive optical array interposes a half-wave plate (330) between two linearly polarized liquid crystal layers (310, 311). The first linearly polarized component is phase shifted by the first liquid crystal layer and the second component, orthogonal to the first, is phase shifted by the second layer.
Abstract:
A programmable electro-optically controlled optical delay device providing multiple optical outputs. The optical delay device provides multiple output ports where the optical propagation delay increases at each port. An incident optical beam is propagated within electro-optically active material within the device, so that the propagation delay at each output port may be varied according to an applied voltage. In an optical beam steering system, the present invention provides true-time delay for multiple optical beams, allowing the beams radiated by the beam steering system to be time-coincident. The present invention provides for one or two dimensional beam steering.
Abstract:
A programmable electro-optically controlled optical delay device providing multiple optical outputs. The optical delay device provides multiple output ports where the optical propagation delay increases at each port. An incident optical beam is propagated within electro-optically active material within the device, so that the propagation delay at each output port may be varied according to an applied voltage. In an optical beam steering system, the present invention provides true-time delay for multiple optical beams, allowing the beams radiated by the beam steering system to be time-coincident. The present invention provides for one or two dimensional beam steering.
Abstract:
A optical phased array device for optical beams with general polarization. A reflective embodiment of the inventive optical phased array interposes a quarter-wave plate (230) between a linearly polarized liquid crystal layer (210) and a mirror (240). A controllable voltage applied across the liquid crystal layer causes a first linearly polarized component of an incident optical beam to be phase shifted when it passes through the liquid crystal layer. The polarization of the optical beam is rotated by 90E when it travels through the quarter-wave plate, is reflected from the mirror, and travels back through the quarter-wave plate. The second linearly polarized component of the optical beam, orthogonal to the first, is phase shifted when it passes back through the liquid crystal layer. A transmissive embodiment of the inventive optical array interposes a half-wave plate (330) between two linearly polarized liquid crystal layers (310, 311). The first linearly polarized component is phase shifted by the first liquid crystal layer and the second component, orthogonal to the first, is phase shifted by the second layer.