Abstract:
Apparatus, systems and methods for characteristics of glass components through use of one or more coatings are disclosed. The coatings are typically thin coatings, such as thin film coatings. The coatings can serve to increase strength of the glass components and/or provide durable user interfacing surfaces. Accordingly, glass articles that have received coatings are able to be not only thin but also sufficiently strong so as to resist damage from impact events. The coated glass articles are well suited for use in consumer products, such as consumer electronic devices.
Abstract:
An injection molding system and methods for improving performance of the same. The system includes a plunger rod and a melt zone that are provided in-line and on a vertical axis. The plunger rod is moved in a vertical direction through the melt zone to move molten material into a mold. The injection molding system can perform the melting and molding processes under a vacuum. Skull formation in molten material is reduced by providing an RF transparent sleeve in the melt zone and/or a skull trapping portion adjacent an inlet of the mold. It can also be controlled based on the melting unit. Vacuum evacuation can be reduced during part ejection by using a plunger seal, so that evacuation time between cycles is reduced.
Abstract:
Provided in one embodiment is a method of joining one or more articles together using pressurized fluid to deform a bulk-solidifying amorphous alloy material and form a mechanical interlock between the respective surfaces joined together.
Abstract:
Techniques or processes for providing markings on products are disclosed. In one embodiment, the products have housings and the markings are to be provided on the housings. For example, a housing for a particular product can include an outer housing surface and the markings can be provided on the outer housing surface so as to be visible from the outside of the housing. The markings are able to be interferometric colors and/or black.
Abstract:
Apparatus, systems and methods for characteristics of glass components through use of one or more coatings are disclosed. The coatings are typically thin coatings, such as thin film coatings. The coatings can serve to increase strength of the glass components and/or provide durable user interfacing surfaces. Accordingly, glass articles that have received coatings are able to be not only thin but also sufficiently strong so as to resist damage from impact events. The coated glass articles are well suited for use in consumer products, such as consumer electronic devices (e.g., electronic devices).
Abstract:
Apparatus, systems and methods for improving strength of a thin glass cover for an electronic device are disclosed. In one embodiment, the glass member can have improved strength by chemical strengthening in a series of stages. The stages can, for example, have a first ion exchange stage where larger ions are exchanged into the glass cover, and a second ion exchange stage where some of the larger ions are exchanged out from the glass cover. Optionally, in one embodiment, the glass cover can improve its strength by forming its edges with a predetermined geometry. Advantageously, the glass cover can be not only thin but also adequately strong to limit susceptibility to damage. In one embodiment, the glass member can pertain to a glass cover for a housing for an electronic device. The glass cover can be provided over or integrated with a display, such as a Liquid Crystal Display (LCD) display.
Abstract:
Apparatus, systems and methods for improving strength of a thin glass cover for an electronic device are disclosed. In one embodiment, the glass member can have improved strength by forming its edges with a predetermined geometry and/or by chemically strengthening the edges. Advantageously, the glass member can be not only thin but also adequately strong to limit susceptibility to damage. In one embodiment, the glass member can pertain to a glass cover for a housing for an electronic device. The glass cover can be provided over or integrated with a display, such as a Liquid Crystal Display (LCD) display.
Abstract:
Headset connector systems and headset engaging connector systems are provided. Headset connector systems can include two or more headset connector contact regions. Headset engaging connector systems can include two or more headset engaging contact regions to provide at least one of power and data. The headset connector system or the headset engaging connector system can include switching circuitry electrically coupled to the respective contact regions. The switching circuitry can be operative to determine an interface orientation between the headset connector contact regions and the headset engaging contact regions. The switching circuitry can also be operative to selectively route received signals based on the determined interface orientation. At least a portion of the headset connector system or the headset engaging connector system can be magnetically attractive.
Abstract:
Method and apparatus for implementing multiple push buttons in a user device are disclosed. The method includes detecting a location of a user input using one or more touch sensors, detecting a force of the user input using a switch, and generating a signal for representing one of the push buttons being pressed according to the location and force of the user input.
Abstract:
Anodized electroplated aluminum structures and methods for making the same are disclosed. Cosmetic structures according to embodiments of the invention are provided by electroplating a non-cosmetic structure with aluminum and then anodizing the electroplated aluminum. This produces cosmetic structures that may possess desired structural and cosmetic properties and that may be suitable for use a housing or support members of electronic devices.