Abstract:
A FinFET (100) comprises a fin-shaped layer-section (116) of a single-crystalline active semiconductor layer (104) extending on an insulating substrate layer (106) along a longitudinal fin direction between, a source layer-section (122), and a drain layer-section (124) of the single-crystalline active semiconductor layer (104). Furthermore, two separate gate-electrode layers (138.1, 138.2) are provided, which do not form sections of the single- crystalline active semiconductor layer, each of the gate-electrode layers facing one of the opposite side faces of the fin- shaped layer-section (116). Each gate-electrode layer is connected with a respective separate gate contact (154, 156). The gate-electrode layers, as seen in a cross-sectional view of a plane that is perpendicular to the longitudinal fin- direction, are arranged on the substrate layer (106) between the respective side face of the fin-shaped layer section and a respective contact-post layer section (118, 120) of the single- crystalline semiconductor layer (104).
Abstract:
An interconnect structure on a substrate is provided. The interconnect structure comprises electrically conductive interconnect elements on at least two interconnect levels on or above a substrate level. In the interconnect structure of the invention, at least one electrically conductive via connects a first interconnect element on one interconnect level or on the substrate level to a second interconnect element on a different interconnect level. The via extends in a via opening of a first dielectric layer and comprises an electrically conductive via material that contains electrically conductive cylindrical carbon nanostructures. At least one cover-layer segment reaches into a lateral extension of the via opening and defines a via aperture that is small enough to prevent a penetration of the carbon nanostructures through the via aperture. This structure enhances control of carbon nanostructure growth in a height direction during fabrication of the interconnect structure.
Abstract:
The invention concerns a MOS transistor comprising a conductive extension (10) of its source region, isolated from its substrate, and extending partly under its channel.
Abstract:
The present invention relates to an integrated-circuit device and to a method for fabricating an integrated-circuit device with an integrated fiuidic-cooling channel. The method comprises forming recesses in a dielectric layer sequence at desired lateral positions of electrical interconnect segments and at desired lateral positions of fiuidic-cooling channel segments. A metal filling is deposited in the recesses of the dielectric layer sequence so as to form the electrical interconnect segments and to form a sacrificial filling in the fiuidic-cooling channel segments. Afterwards, the sacrificial metal filling is selectively removed from the fiuidic- cooling channel segments.
Abstract in simplified Chinese:本发明关于一节省成本之液体处理单元(100)。根据本发明,一控制单元(152)系连接至一控制阀(118、120、122)之一输入端口,且系调适以根据归因于该基板的给定或所要温度及/或该基板处一气体周围环境的给定或所要压力所导致的该基板上一处理液体之蒸发率,设置用于该液体处理而欲施加至该基板的分配脉冲数量、设置个别分配脉冲的一个别脉冲持续时间、及设置该等个别分配脉冲之间的个别分配中断时段。如此一来,处理液体的使用减小至最小量,因而减少用于提供及清洗处理液体的成本。
Abstract in simplified Chinese:本发明系关于一种集成电路设备且系关于一种用于制造一具有一集成之流体冷却信道之集成电路设备的方法。该方法包含:在一介电层串行中,在电互连片段之所要横向位置处及在流体冷却信道片段之所要横向位置处形成凹处。在该介电层串行之该等凹处中沉积一金属填料以便形成该等电互连片段且在该等流体冷却信道片段中形成一牺牲填料。此后,自该等流体冷却信道片段选择性地移除该牺牲金属填料。
Abstract in simplified Chinese:本发明揭示一种用以设计集成电路(IC)布局的方法与设备,其方式如下:于该IC布局(20)内的一特征(110、120)之中识别一或多个缺陷。判断一经识别的缺陷是否可改良(30)。依据可改良缺陷的数量及经识别的缺陷的总数量来计算该IC布局的改良度量(60)。
Abstract in simplified Chinese:本发明系关于一种用于处理半导体设备中所使用之基板之表面的溶液。更特定言之,本发明系关于一种半导体加工中所使用之液体冲洗调配物,其特征为该液体调配物含有:i.表面钝化剂,ii.除氧剂,及iii.界面活性剂,其包含聚乙二醇、乙二醇-丙二醇嵌段共聚物、缩醛-甲醛嵌段共聚物(POM)及/或聚丙二醇中之一或多者;其中该冲洗调配物之pH値为8.0或8.0以上。
Abstract in simplified Chinese:本发明系关于一种用于电连接一集成电路设备中之集成电路组件之金属互链接构。该金属互链接构解决了在镶嵌互链接构中之操作可靠度的若干问题,该等问题归因于根据先前技术处理技术所制造之互连接之顶部边缘处存在的隅角效应及结构疵点。在金属互链接构之替代组态中,罩盖间隔器(334)配置为邻接且分别覆盖互连接(304)或侧向障壁衬垫(316)之外顶部边缘(316c)。本发明之互链接构消除了在该金属互链接构中之此等临界区域对一集成电路设备之操作可靠性的负面影响。
Abstract:
The invention relates to a method for production of a device (100), comprising at least one integrated circuit (104) and at least one N/MEMS (122), comprising at least the following steps: production of the N/MEMS in at least one upper layer (116) arranged at least above a first section of a substrate (120), production of the integrated circuit in a second section of the substrate and/or in a semiconductor layer arranged at least above the second section of the substrate and further comprising the production of a cover (124) encapsulating the N/MEMS from at least one layer used for the production of a grid (114) in the integrated circuit and/or for the production of at least one electrical contact(128, 130, 132, 134) of the integrated circuit.