Abstract:
The invention relates to a process for producing urea wherein an aqueous urea solution, leaving a urea reaction zone is fed to a stripper, where a part of the non-converted ammonia and carbon dioxide is separated from the aqueous urea solution, which solution leaves the stripper to a first recovery section of one or more serial recovery sections and is subsequently fed to one or more urea concentration sections, wherein the urea solution leaving the stripper is subjected to an adiabatic expansion, thus creating a vapor and a liquid, which are separated before the liquid enters a first recovery section and the vapor is condensed. The invention further relates to a urea plant comprising a stripper and a first recovery section, wherein an adiabatic expansion valve and a liquid/gas separator is provided between the stripper and the first recovery section.
Abstract:
The invention relates to a process for the manufacture of a tubular composite part whose longitudinal axis exhibits a curve and/or whose wall exhibits a variable cross section relative to the longitudinal axis in which process, a tubular semi-finished product, comprising an uncured or a partially cured resin and fibre reinforcement and further comprising an inflatable former, is introduced into a mould, a medium is brought into the inflatable former under pressure, the resin being cured and the composite part thus obtained being removed, characterized in that the fibre reinforcement comprises at least a knitted or braided sleeve. Composite parts according to the invention can be used in numerous applications where complex structural parts are required that combine high pressure-resistance, flexural, torsional and tensile strength. Such an application is sometimes referred to as a space frame. Examples are the supporting parts in a car body or in a boat or aircraft, in construction, rucksack frames, bicycle frames, lampposts and sports equipment, such as bobsleighs, etc.
Abstract:
Polytetramethylene adipamide resin compositions containing 100 parts by weight of the polyamide and 2 to 20 parts by weight of a silicon oil. Objects produced from the composition possess good surface appearance, excellent sliding properties and high heat resistance and rigidity.
Abstract:
The disclosure pertains to an urea production plant and process using a thermal stripper, wherein the reaction mixture is separated in two parts, wherein the first part is supplied at least in part to the thermal stripper and the second part at least in part bypasses the thermal stripper and is supplied to a medium pressure recovery section.
Abstract:
The invention pertains to a finishing process for urea-comprising material, a plant for finishing urea-comprising material, a method of modifying an existing plant, and a use. Methods are disclosed for preventing the clogging of the conduit for off-gas between the finishing section and the treatment section.
Abstract:
Disclosed is a method of making a granulate of a urea product comprising urea and a salt, such as urea ammonium sulfate, having a high content of the salt. The high content is such as to provide an amount of the salt above the limit of solubility of the salt in urea. The granulate of the invention is characterized by having a smooth surface, which, e.g. in the event of urea ammonium sulfate, is not normally the case for granulate having the aforementioned high ammonium sulfate content. According to the invention this is realized by dividing the feed liquids to granulation. This division is based on non-final granulation liquids of a sufficiently high content of the salt, and a final granulation liquid (determining the surface) having a salt content of below the solubility limit of the salt, or no salt at all. E.g. in the event of urea ammonium sulfate, the non-final granulation liquids possibly are a slurry of urea and more than 20 wt.% of ammonium sulfate. The final granulation liquid then has 0-20 wt.% of ammonium sulfate, i.e. below the solubility limit.
Abstract:
Disclosed is a method for the integrated production of two different urea products. One is an aqueous urea solution suitable for use in NOx abatement (generally indicated as Diesel Exhaust Fluid – DEF). The other is a solution used as a fertilizer, viz. Urea Ammonium Nitrate (UAN). The production of DEF and UAN are integrated as follows: ammonia recovered from the production of urea is used as a feed to the production of ammonium nitrate. At least part of an aqueous urea stream from urea production, is mixed with ammonium nitrate so as to obtain UAN.
Abstract:
Disclosed is a method of increasing the capacity of an existing urea plant. With reference to the regular components of a urea plant, including a synthess section comprising a a high pressure carbamate condenser and a reactor, and a recovery section, the method comprises installing an additional reactor between the recovery section and the high pressure carbamate condenser. The additional reactor is preferably installed in connection with an ejector, so as to allow ground placement of the additional reactor.
Abstract:
The invention relates to a process for the removal of CO 2 from acid gas by cryogenic distillation performed in two steps. The feed mixture is first distilled at high pressure (at least 45 bar) in a first distillation column. The top product or a part thereof is then, after heating, subjected to a second distillation step at a lower pressure (lower than 45 bar). The top product of the second distillation step is methane of high purity (more than 99 mol.%). The bottom product of the second distillation step is recycled back to the first distillation column. The method according to the invention allows complete separation of methane also at higher level of acidic components, is economical and does not result in solid CO 2 build-up, which is a common problem in cryogenic distillation.
Abstract:
The present application relates to a method of manufacturing a tube sheet (7) and heat exchanger assembly for a pool reactor or pool condenser for use in the production of urea from ammonia and carbon dioxide, wherein the method comprises manufacturing of the tube sheet (7) from a carbon steel material grade and providing said tube sheet (7) with corrosion protective layers (8, 9) of an austenitic- ferritic duplex stainless steel grade, wherein the heat exchanger comprises at least one U-shaped tube (13) of an austenitic-ferritic duplex stainless steel grade, the method further comprises inserting at least two sleeves (11) of an austenitic-ferritic duplex stainless steel grade through the tube sheet (7) such that both ends of the sleeve (11) extend in a direction away from the tube sheet (7), the method further comprises connecting the sleeves (11), at least the opposing ends thereof, to at least the protective layers (8,9) of the tube sheet (7) and finally, connecting both ends of the at least one U-shaped tube (13) to the respective sleeves (11).