Abstract:
A computer-implemented method as follows. Providing a list of target sequences associated with one or more organisms in a list of organisms. Providing a list of candidate prototype sequences suspected of hybridizing to one or more of the target sequences. Generating a collection of probes corresponding to each candidate prototype sequence, each collection of probes having a set of probes for every subsequence having a predetermined, fixed subsequence length of the corresponding candidate prototype sequence. The sets consist of the corresponding subsequence and every variation of the corresponding subsequence formed by varying a center nucleotide of the corresponding subsequence. Generating a set of fragments corresponding to each target sequence, each set of fragments having every fragment having a predetermined, fixed fragment length of the corresponding target sequence. Calculating the binding free energy of each fragment with a perfect complimentary sequence of the fragment. If any binding free energy is above a predetermined, fixed threshold, the fragment is extended one nucleotide at a time until the binding free energy is below the threshold or the fragment is the same length as the probe, generating a set of extended fragments. Determining which extended fragments are perfect matches to any of the probes. Assembling a base call sequence corresponding to each candidate prototype sequence. The base call sequence has a base call corresponding to the center nucleotide of each probe of the corresponding prototype sequence that is a perfect match to any extended fragment, but for which the other members of the set of probes containing the perfect match probe are not perfect matches to any extended fragment and a non-base call in all other circumstances.
Abstract:
An apparatus having within or as part of a housing; a sample port; a microarray port; a lysis module; a purification module for containing a solid phase for binding of oligonucleotides; a thermocycling module for containing a polymerase chain reaction; a fragmentation module; and a microarray module for holding a microarray and a liquid in contact with the microarray. The apparatus is configured to be coupled to a device for: pumping a liquid through, in order, the lysis, purification, thermocycling, fragmentation, and microarray modules; sonicating any contents of the lysis module; thermocycling the thermocycling module to perform the polymerase chain reaction; heating the fragmentation module to fragment any oligonucleotides contained therein; circulating a fluid over the surface of the microarray; and performing one or more washing or staining steps on the microarray.
Abstract:
The present invention provides a specific set of gene expression markers from peripheral blood leukocytes that are indicative of a host response to exposure, response, and recovery infectious pathogen infections. The present invention further provides methods for identifying the specific set of gene expression markers, methods of monitoring disease progression and treatment of infectious pathogen infections, methods of prognosing the onset of an infectious pathogen infection, and methods of diagnosing an infectious pathogen infection and identifying the pathogen involved.
Abstract:
The present invention relates to pathogen detection and identification by use of DNA resequencing microarrays. The present invention also provides resequencing microarray chips for differential diagnosis and serotyping of pathogens present in a biological sample. The present invention further provides methods of detecting the presence and identity of pathogens present in a biological sample. The present invention also provides a computer-implemented biological sequence identifier (CIBSI) system and method for selecting a subsequence from biological sequence data according to at least one selection parameter. The at least one selection parameter corresponds to a likelihood of returning a meaningful result from a similarity search.
Abstract:
The present invention relates to pathogen detection and identification by use of DNA resequencing microarrays. The present invention also provides resequencing microarray chips for differential diagnosis and serotyping of pathogens present in a biological sample. The present invention further provides methods of detecting the presence and identity of pathogens present in a biological sample. The present invention also provides a computer-implemented biological sequence identifier (CIBSI) system and method for selecting a subsequence from biological sequence data according to at least one selection parameter. The at least one selection parameter corresponds to a likelihood of returning a meaningful result from a similarity search.
Abstract:
A method of: submitting reference sequences to a taxonomic database to produce taxonomic results; and reporting a taxonomic identification based on the taxonomic results. The reference sequences are the output of genetic database queries that return a score for each reference sequence. A method for processing a biological sequence obtained from an assay by: converting base calls located in a predetermined list of positions within the biological sequence to N; and determining the ratio of single nucleotide polymorphisms in the biological sequence relative to a reference sequence. Each entry in the predetermined list of positions represents the capability of a substance hybridizing to a microarray used to generate the biological sequence. The substance is not the nucleic acid of a target pathogen.