Abstract:
Microlenses (30) are formed on a substrate (18) having a first absorption within an operational wavelength range, and a second absorption outside the operational wavelength range, wherein the second absorption is greater than the first absorption. One or more waveguides (14) are coupled with a processing light beam(20) having, a wavelength outside the operational wavelength range, and the processing light beam is directed through the waveguides to the substrate to locally heat and expand the substrate so as to form microlenses on the substrate.surface. The processing light beam is terminated to stop heating of the substrate and fix the microlenses.
Abstract:
Disclosed is a method for fabricating glass bump standoff structures of precise height, the method comprising providing oversized glass bumps on a glass substrate, providing a heat source to heat the bumps, positioning a substrate to be aligned on the oversized bumps, and reducing the height of the oversized bumps by a combination of manipulations comprising (1) softening the bumps by heating the bumps and (2) applying pressure to the substrate to be aligned.
Abstract:
A method of forming, on the surface of a glass material, a raised feature having a height within a target range, comprising (1) providing a glass material having a surface, (2) providing the glass material locally, at a location at or below the surface, with an amount of energy causing local expansion of the glass material so as to raise a feature on the surface at the location, (3) detecting the height of the raised feature or the height over time of the raised feature, (4) (a) if the height is below or approaching a value below the target range, providing the glass material at the location with energy in a greater amount, or (b) if the height is above or approaching a value above the target range, providing the glass material at the location with energy in a lesser amount, and (5) repeating steps (3) and (4) as needed to bring the height within the target range. Methods and devices for automating this process are also disclosed.
Abstract:
A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. In one embodiment, the hermetically sealed glass package is manufactured by providing a first substrate plate and a second substrate plate. The second substrate contains at least one transition or rare earth metal such as iron, copper, vanadium, manganese, cobalt, nickel, chromium, neodymium and/or cerium. A sensitive thin-film device that needs protection is deposited onto the first substrate plate. A laser is then used to heat the doped second substrate plate in a manner that causes a portion of it to swell and form a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the thin film device. The second substrate plate is doped with at least one transition metal such that when the laser interacts with it there is an absorption of light from the laser in the second substrate plate, which leads to the formation of the hermetic seal while avoiding thermal damage to the thin-film device. Another embodiment of the hermetically sealed glass package and a method for manufacturing that hermetically sealed glass package are also described herein.
Abstract:
The present invention provides methods of generating short wavelength radiation, methods of transporting short wavelength radiation, and apparati used in these methods. One embodiment of the invention provides a method of transporting short wavelength radiation using a photonic band gap fiber. Another embodiment of the invention provides a method of transporting short wavelength radiation using a bundle of photonic band gap fibers. Another embodiment of the invention provides a method of generating ultraviolet radiation using high harmonic generation by pumping a noble gas-filled photonic band gap fiber with a pulsed laser source.
Abstract:
Methods of forming a glass article are disclosed. In one embodiment, a method of forming a glass article includes translating a pulsed laser beam on a glass substrate sheet to form a laser damage region between a first surface and a second surface of the glass substrate sheet. The method further includes applying an etchant solution to the glass substrate sheet to remove a portion of the glass substrate sheet about the laser damage region. The method may further include strengthening the glass substrate sheet by an ion-exchange strengthening process, and coating the glass substrate sheet with an acid-resistant coating. Also disclosed are methods where the laser damage region has an initial geometry that changes to a desired geometry following the reforming of the glass substrate sheet such that the initial geometry of the laser damage region compensates for the bending of the glass substrate sheet.
Abstract:
Methods of forming a glass article are disclosed. In one embodiment, a method of forming a glass article includes translating a pulsed laser beam on a glass substrate sheet to form a laser damage region between a first surface and a second surface of the glass substrate sheet. The method further includes applying an etchant solution to the glass substrate sheet to remove a portion of the glass substrate sheet about the laser damage region. The method may further include strengthening the glass substrate sheet by an ion-exchange strengthening process, and coating the glass substrate sheet with an acid-resistant coating. Also disclosed are methods where the laser damage region has an initial geometry that changes to a desired geometry following the reforming of the glass substrate sheet such that the initial geometry of the laser damage region compensates for the bending of the glass substrate sheet.
Abstract:
A glass article having strengthened surfaces joined by at least one edge. The strengthened surfaces are under compressive stress. The glass article also has an inner region that is under a tensile stress of greater than about 40 MPa. The edge includes at least one fracture line that is parallel to the surfaces. A first portion of the edge is under compression and a second portion is under tension. The edge is formed by irradiating a glass mother sheet with a laser to form a damage line within the central region laser and separating the glass article from the mother sheet.
Abstract:
A method of cutting a glass sheet that has been thermally or chemically strengthened along a predetermined line, axis, or direction with high speed and with minimum damage on the cut edges. The strengthened glass sheet may be cut into at least two pieces, one of which having a predetermined shape or dimension. At least one damage line is formed within the strengthened glass sheet. The at least one damage line is formed outside the strengthened compressive stress surface layers and within the tensile stress layer of the strengthened glass sheet. The at least one damage line may be formed by laser treatment. A crack is initiated in the strengthened glass sheet and propagated along the at least one damage line to separate the strengthened glass sheet along the predetermined line, axis, or direction into at least two pieces.
Abstract:
A method of forming, on the surface of a glass material, a raised feature having a height within a target range, comprising (1) providing a glass material having a surface, (2) providing the glass material locally, at a location at or below the surface, with an amount of energy causing local expansion of the glass material so as to raise a feature on the surface at the location, (3) detecting the height of the raised feature or the height over time of the raised feature, (4) (a) if the height is below or approaching a value below the target range, providing the glass material at the location with energy in a greater amount, or (b) if the height is above or approaching a value above the target range, providing the glass material at the location with energy in a lesser amount, and (5) repeating steps (3) and (4) as needed to bring the height within the target range. Methods and devices for automating this process are also disclosed.