Abstract:
A plate-based microelectromechanical system (MEMS) switch (20) is provided which includes a moveable plate (22) suspended above a substrate and a plurality of arms (36) extending from the periphery of the moveable plate (22) . The moveable plate includes a first electrode suspended over a second electrode arranged on the substrate and a first input/output signal contact structure electrically isolated from the first electrode. In some embodiments, the first input/output signal contact structure is arranged proximate to the edge of the moveable plate (22) . In addition or alternatively, one of the arms (36) is electrically coupled to the first input/output signal contact structure and comprises an input/output signal trace. A cantilever-based MEMS switch is provided which includes a cantilever structure with a first electrode suspended (over) a second electrode arranged upon a substrate. In addition, the cantilever structure includes an input/output signal line spaced apart from the first electrode and arranged above an input/output signal contact structure.
Abstract:
A microelectromechanical device is provided which includes a beam configured to apply an opening force on a closed switch. The opening force may be substantially independent of a force stored in the closed switch. A combination of the force applied by the beam and the force stored in the closed switch may be sufficient to open the switch after removal of a force associated with actuation of the switch. Another micro-electromechanical device includes a switch beam spaced above a closing gate and a contact structure. The device may also include an additional beam configured to apply a force on the switch beam in a direction away from the contact structure. A method for opening a switch includes reducing an attractive force between a switch beam and a closing gate. The method also includes externally applying a mechanical force on the switch beam in a direction away from the closing gate.
Abstract:
A plate-based microelectromechanical system (MEMS) switch is provided which includes a moveable plate suspended above a substrate and a plurality of arms extending from the periphery of the moveable plate. The moveable plate includes a first electrode suspended over a second electrode arranged on the substrate and a first input/output signal contact structure electrically isolated from the first electrode. In some embodiments, the first input/output signal contact structure is arranged proximate to the edge of the moveable plate. In addition or alternatively, one of the arms is electrically coupled to the first input/output signal contact structure and comprises an input/output signal trace. A cantilever-based MEMS switch is provided which includes a cantilever structure with a first electrode suspended a second electrode arranged upon a substrate. In addition, the cantilever structure includes an input/output signal line spaced apart from the first electrode and arranged above an input/output signal contact structure.
Abstract:
In methods and circuits for using associated circuitry to enhance performance of a micro-electromechanical switch, one of the method embodiments is a contact conditioning process including applying a time-varying voltage to the control element of a closed switch. In another embodiment, a voltage profile applied to the control element of the switch can be tailored to improve the actuation speed or reliability of the switch. In another method embodiment, the performance of a switch may be evaluated by measuring a performance parameter, and corrective action initiated if the switch performance is determined to need improvement. An embodiment of a circuit for maintaining performance of a micro-electromechanical switch includes first and second signal line nodes, sensing circuitry coupled to the signal line nodes and adapted to sense a performance parameter value of the switch, and control circuitry operably coupled to at least one terminal of the switch.
Abstract:
In methods and circuits for using associated circuitry to enhance performance of a micro-electromechanical switch, one of the method embodiments is a contact conditioning process including applying a time-varying voltage to the control element of a closed switch. In another embodiment, a voltage profile applied to the control element of the switch can be tailored to improve the actuation speed or reliability of the switch. In another method embodiment, the performance of a switch may be evaluated by measuring a performance parameter, and corrective action initiated if the switch performance is determined to need improvement. An embodiment of a circuit for maintaining performance of a micro-electromechanical switch includes first and second signal line nodes, sensing circuitry coupled to the signal line nodes and adapted to sense a performance parameter value of the switch, and control circuitry operably coupled to at least one terminal of the switch.
Abstract:
A microelectromechanical system (MEMS) switch is provided which includes a multiple of three support arms extending from the periphery of a moveable electrode. In addition, MEMS switch includes a plurality of contact structures having portions extending into a space between a fixed electrode and the moveable electrode. In some cases, the relative arrangement of the support arms and the contact structures are congruent among three regions of the MEMS switch which collectively comprise the entirety of the fixed electrode and the entirety of the moveable electrode. In other embodiments, the contact structures may not be arranged congruently within the MEMS switch.
Abstract:
In methods and circuits for using associated circuitry to enhance performance of a micro-electromechanical switch, one of the method embodiments is a contact conditioning process including applying a time-varying voltage to the control element of a closed switch. In another embodiment, a voltage profile applied to the control element of the switch can be tailored to improve the actuation speed or reliability of the switch. In another method embodiment, the performance of a switch may be evaluated by measuring a performance parameter, and corrective action initiated if the switch performance is determined to need improvement. An embodiment of a circuit for maintaining performance of a micro-electromechanical switch includes first and second signal line nodes, sensing circuitry coupled to the signal line nodes and adapted to sense a performance parameter value of the switch, and control circuitry operably coupled to at least one terminal of the switch.