Abstract:
In methods and circuits for using associated circuitry to enhance performance of a micro-electromechanical switch, one of the method embodiments is a contact conditioning process including applying a time-varying voltage to the control element of a closed switch. In another embodiment, a voltage profile applied to the control element of the switch can be tailored to improve the actuation speed or reliability of the switch. In another method embodiment, the performance of a switch may be evaluated by measuring a performance parameter, and corrective action initiated if the switch performance is determined to need improvement. An embodiment of a circuit for maintaining performance of a micro-electromechanical switch includes first and second signal line nodes, sensing circuitry coupled to the signal line nodes and adapted to sense a performance parameter value of the switch, and control circuitry operably coupled to at least one terminal of the switch.
Abstract:
A microelectromechanical device is provided which includes a beam configured to apply an opening force on a closed switch. The opening force may be substantially independent of a force stored in the closed switch. A combination of the force applied by the beam and the force stored in the closed switch may be sufficient to open the switch after removal of a force associated with actuation of the switch. Another micro-electromechanical device includes a switch beam spaced above a closing gate and a contact structure. The device may also include an additional beam configured to apply a force on the switch beam in a direction away from the contact structure. A method for opening a switch includes reducing an attractive force between a switch beam and a closing gate. The method also includes externally applying a mechanical force on the switch beam in a direction away from the closing gate.
Abstract:
A microelectromechanical device is provided which includes a beam configured to apply an opening force on a closed switch. The opening force may be substantially independent of a force stored in the closed switch. A combination of the force applied by the beam and the force stored in the closed switch may be sufficient to open the switch after removal of a force associated with actuation of the switch. Another micro-electromechanical device includes a switch beam spaced above a closing gate and a contact structure. The device may also include an additional beam configured to apply a force on the switch beam in a direction away from the contact structure. A method for opening a switch includes reducing an attractive force between a switch beam and a closing gate. The method also includes externally applying a mechanical force on the switch beam in a direction away from the closing gate.
Abstract:
The present invention provides an improved fluorinated polymer encapsulant for protectively coating electronic devices in an electronic device module. Also provided is a method for applying and reworkably removing the same to and from the electronic device module. In one embodiment, a coating of a fluorinated polymer solution is applied to at least a portion of an electronic device module. The module is then baked to operably fix to it the fluorinated polymer coating.
Abstract:
An apparatus and method of fabricating and operating a micro-electromechanical systems (MEMS) integrated optical structure is disclosed. Micro-optics is integrated with MEMS actuators to provide a building block for a micro-optical communication device. Such micro-optical communication device may realize a variety of optical communication systems including optical interconnects, laser communications, or fiber optic switches. In accordance with one aspect of the present invention, a micro-optical element such as a micro-lens is advantageously integrated with an actuator such as MEMS comb drive actuator to form a MEMS lens assembly. The MEMS lens assembly is further coupled to an optical source which may provide a MEMS integrated micro-optical communication device. This integration substantially obviates the generally needed external or manual positioning of the micro-optical element to align a light beam or an optical signal being emitted from the optical source. The MEMS comb drive actuator, responsive to an actuation force, selectively positions the micro-optical element. By appropriately micro positioning a micro-optical element such as a micro-lens relative to an optical source, such as an input optical fiber or a laser diode, a focused light beam or an optical signal may be coupled to a respective optical fiber or a detector. In one embodiment, a commonly used flip chip module assembly technique may be adapted for bonding the MEMS lens assembly to a carrier substrate, which preferably receives the optical source. The carrier substrate is generally disposed on a host assembly. A flip chip based passive alignment of the MEMS lens assembly could be provided. Additionally, an active alignment of the light beam or optical signal with an optical detector may be provided, which can be maintained through a feedback loop.
Abstract:
A microelectromechanical system (MEMS) switch is provided which includes a moveable electrode (32) with an opening (49) arranged over at least a portion of the signal trace (28). In some cases, the opening may include a notch (34) arranged along a periphery of the moveable electrode. In particular, the opening may include a notch bound by two edges of the moveable electrode which are respectively arranged relative to opposing sides of the signal trace. In other embodiments, the opening may include a hole arranged interior to the peripheral edge of the moveable electrode. In some cases, the MEMS switch may include a plurality of contact structures coupled to signal traces. In such cases, the moveable electrode may include openings specifically arranged above a plurality of the signal traces.
Abstract:
A microelectromechanical system (MEMS) switch is provided which includes a multiple of three support arms extending from the periphery of a moveable electrode. In addition, MEMS switch includes a plurality of contact structures having portions extending into a space between a fixed electrode and the moveable electrode. In some cases, the relative arrangement of the support arms and the contact structures are congruent among three regions of the MEMS switch which collectively comprise the entirety of the fixed electrode and the entirety of the moveable electrode. In other embodiments, the contact structures may not be arranged congruently within the MEMS switch.
Abstract:
A plate-based microelectromechanical system (MEMS) switch (20) is provided which includes a moveable plate (22) suspended above a substrate and a plurality of arms (36) extending from the periphery of the moveable plate (22) . The moveable plate includes a first electrode suspended over a second electrode arranged on the substrate and a first input/output signal contact structure electrically isolated from the first electrode. In some embodiments, the first input/output signal contact structure is arranged proximate to the edge of the moveable plate (22) . In addition or alternatively, one of the arms (36) is electrically coupled to the first input/output signal contact structure and comprises an input/output signal trace. A cantilever-based MEMS switch is provided which includes a cantilever structure with a first electrode suspended (over) a second electrode arranged upon a substrate. In addition, the cantilever structure includes an input/output signal line spaced apart from the first electrode and arranged above an input/output signal contact structure.