Abstract:
The present invention provides dual specificity antibody fusion proteins comprising an antibody Fab or Fab′ fragment with specificity for an antigen of interest, said fragment being fused to at least one single domain antibody which has specificity for a second antigen of interest.
Abstract:
The present invention relates to a process for the purification of an antibody fragment from a periplasmic cell extract comprising a first cation exchange chromatography step and a second anion exchange chromatography step.
Abstract:
The invention relates to antibody molecules having specificity for antigenic determinants of human OX40, therapeutic uses of the antibody molecules and methods for producing said antibody molecules.
Abstract:
The invention relates to the treatment of bone disorders. In particular, the invention is directed to the use of a dosing holiday to help overcome the resistance to anti-sclerostin antibodies which develops over time when a plurality of doses of antibody are given to a subject. By giving the subject to be treated such a dosing holiday, the subject may subsequently display an increased response to a subsequent dose of the anti-sclerostin antibody. The subject may be given multiple cycles of a batch of at least two doses of anti-sclerostin antibody and a dosing holiday. In some instances, the subject may be monitored to help determine when to give the dosing holiday. Further, the subject may be given a different treatment for the bone disorder during the dosing holiday from the anti-sclerostin antibody.
Abstract:
The invention relates to the treatment of bone disorders. In particular, the invention provides an approach involving administration of a high initial dose or doses of an sclerostin antibody to bring about a rapid increase in bone formation, followed by administration of lowers doses of the antibody to give a sustained lower rate of bone formation after the initial burst of bone formation. The invention also provides an approach involving decreasing dosing frequency with such an antibody to control bone formation. The approaches may be used in particular in those subjects who would benefit most from such an initial rapid burst of bone formation. Examples of such subjects include subjects who have been recently diagnosed or are experiencing severe symptoms of the disorder, as well as those subjects who have been administered a different treatment for the bone disorder which is proving ineffective. The approaches may be used in combination with each other.
Abstract:
A novel class or family of TGF-β binding proteins is disclosed. Also disclosed are assays for selecting molecules for increasing bone mineralization and methods for utilizing such molecules.
Abstract:
Compositions and methods relating to antibodies that specifically bind to TGF-beta binding proteins are provided. These methods and compositions relate to altering bone mineral density by interfering with the interaction between a TGF-beta binding protein sclerostin and a TGF-beta superfamily member, particularly a bone morphogenic protein. Increasing bone mineral density has uses in diseases and conditions in which low bone mineral density typifies the condition, such as osteopenia, osteoporosis, and bone fractures.
Abstract:
The invention relates to 2-oxo-1-pyrrolidinyl triazole derivatives, processes for preparing them, pharmaceutical compositions containing them and their use as pharmaceuticals for enhancing the cognitive function or to counteract cognitive decline.
Abstract:
The present invention provides a recombinant gram-negative bacterial cell comprising a mutant spr gene encoding a spr protein having a mutation at one or more amino acids selected from D133, H145, H157, N31, R62, 170, Q73, C94, S95, V98, Q99, R100, L108, Y115, V135, L136, G140, R144 and G147 and wherein the cell has reduced Tsp protein activity compared to a wild-type cell.
Abstract:
The present invention relates to a recombinant host cell, wherein the cell is modified to increase the expression levels of Ero1 and XBP1 relative to the expression levels of Ero1 and XBP1 in an unmodified cell. The present invention also relates to a method of producing a recombinant protein of interest comprising expressing the recombinant protein of interest in the recombinant host cell.