-
公开(公告)号:CN104032233A
公开(公告)日:2014-09-10
申请号:CN201410227245.8
申请日:2014-05-27
Applicant: 中国核动力研究设计院
Abstract: 本发明公开了一种奥氏体不锈钢,其成分重量百分比为:C:≤0.08%,Si:0.20%-0.70%,Mn:0.50%-1.50%,Ni:19.00%-22.00%,Cr:23.00%-25.00%,Mo:2.65%-2.88%,P:<0.005%,S:<0.005%,Co:<0.01%,余量为铁和杂质。本发明还公开了上述奥氏体不锈钢的制造工艺。本发明的不锈钢具有良好的蠕变性能、氧化性能、腐蚀性能等,具有良好的中子经济性和成本经济性,抗中子辐照肿胀性能良好,满足SCWR燃料包壳或堆内构件应用要求,为SCWR提供候选材料,此外,也可满足核反应堆温度、安全性、经济性不断提高的需要。
-
公开(公告)号:CN114038585A
公开(公告)日:2022-02-11
申请号:CN202111363495.0
申请日:2021-11-17
Applicant: 中国核动力研究设计院
Abstract: 本发明公开了一种弧顶式多层结构的非能动氢复合器,包括内部为空腔结构的壳体,壳体的顶面为弧形结构的弧顶,壳体的上端侧面设有出气口,出气口上装有防护金属网格,壳体的下端设有进气口;进气口与出气口之间沿着气体流动方向设置有多层催化床。本发明的非能动复合器,顶部为弧形结构的弧顶,该结构可以使非能动氢复合器上方滴下的喷淋液沿着圆弧形曲面流下,能够避免喷淋液进入出气口腐蚀催化剂;同时该圆弧形曲面可以最小化混合气体排出时的摩擦阻力,有助于混合气体的从侧面出气口中排出;同时,通过设置多层结构的催化床,可以在相同空间的条件下,增加催化剂与混合空气的接触面积,提高其除氢效率。
-
公开(公告)号:CN107177780B
公开(公告)日:2019-06-07
申请号:CN201710390479.8
申请日:2017-05-27
Applicant: 中国核动力研究设计院
Abstract: 本发明公开了一种核燃料组件包壳材料FeCrAl基合金及其制备方法,所述合金由以下组分组成:Cr,Al,Mo,Nb,Si,Zr,V,Ga,Ce,C,N,O,Fe,杂质,其中,Cr、Al及Si合金元素的总重量百分比含量为16.1%~20.5%,Mo、Nb、Zr及V合金元素的总重量百分比含量为3.1%~6.2%。本发明所述合金通过合理控制各个组分之间的比例,在此范围内的合金元素之间的相互作用,不仅能够确保FeCrAl基合金的抗高温氧化性能,能够避免Cr、Al含量过高导致的合金硬化及脆化倾向,同时兼具较高的高温强度和韧性。
-
公开(公告)号:CN106872345B
公开(公告)日:2019-05-14
申请号:CN201710128122.2
申请日:2017-03-06
Applicant: 中国核动力研究设计院
IPC: G01N17/00
Abstract: 本发明公开了腐蚀试验的全自动安全控制系统,解决了现有技术中的安全控制系统无法保证超临界腐蚀试验长期稳定可靠进行的问题。本发明包括设置在腐蚀试验回路上且具有加热模块的高压釜,实现腐蚀试验回路内高压釜出口处试验介质冷却的热交换器,设置在热交换器的冷却水回路上的通断装置,以及控制通断装置和加热模块的控制系统,所述控制系统包括与加热模块连接的智能计时器模块,与加热模块通过磁环耦合的感生电流模块,连接在感生电流模块上的加热控制模块和延迟电路模块,以及控制加热控制模块、加热模块和通断装置通断的功能模块。本发明具有满足超临界水腐蚀试验的安全要求、保证超临界腐蚀试验长期稳定可靠的进行等优点。
-
公开(公告)号:CN104795112B
公开(公告)日:2017-12-15
申请号:CN201510106346.4
申请日:2015-03-11
Applicant: 中国核动力研究设计院
CPC classification number: Y02E30/39
Abstract: 本发明公开了一种CaO掺杂UO2‑10wt%Gd2O3可燃毒物及其制备方法。所述CaO掺杂UO2‑10wt%Gd2O3,由以下重量百分比的组分组成:CaO 0‑0.5wt%;Gd2O3 10wt%;余量为UO2。本发明还提供一种用于制备上述可燃毒物的方法,该方法工艺简单,成本低且制得的可燃毒物具有优良的晶粒尺寸、烧结密度及热导率。本发明通过在UO2‑10wt%Gd2O3可燃毒物中掺杂CaO,使得提高氧化钆浓度的可燃毒物仍具有优良的烧结密度、晶粒尺寸和热导率。
-
公开(公告)号:CN107217197A
公开(公告)日:2017-09-29
申请号:CN201710389966.2
申请日:2017-05-27
Applicant: 中国核动力研究设计院
IPC: C22C38/02 , C22C38/06 , C22C38/22 , C22C38/26 , C22C38/28 , C22C38/44 , C22C38/48 , C22C38/50 , C21D8/02 , G21C3/07
CPC classification number: Y02E30/40 , C22C38/02 , C21D8/0226 , C21D8/0236 , C21D8/0263 , C22C33/04 , C22C38/002 , C22C38/06 , C22C38/22 , C22C38/26 , C22C38/28 , C22C38/44 , C22C38/48 , C22C38/50 , G21C3/07
Abstract: 本发明公开了一种先进核燃料元件包壳用FeCrAl基合金材料及其制备方法,以重量计,Cr:12.5~14.5%,Al:3.5~5.5%,Mo:1.7~2.0%,Nb:0.8~1.0%,Ti:0.5~1.0%,Si:0.1~0.2%,Zr+Ta+W:0.1~0.3%,Ga+Ni:0.1~0.2%,余量为铁和符合工业标准的杂质。本发明的合金材料在1000℃水蒸气条件下具有优异的高温氧化性能,在800℃高温下合金具有较高的高温强度和组织热稳定性,在室温下具有很高的力学强度和较高的塑韧性。
-
公开(公告)号:CN104032233B
公开(公告)日:2016-09-14
申请号:CN201410227245.8
申请日:2014-05-27
Applicant: 中国核动力研究设计院
Abstract: 本发明公开了一种奥氏体不锈钢,其成分重量百分比为:C:≤0.08%,Si:0.20%‑0.70%,Mn:0.50%‑1.50%,Ni:19.00%‑22.00%,Cr:23.00%‑25.00%,Mo:2.65%‑2.88%,P:<0.005%,S:<0.005%,Co:<0.01%,余量为铁和杂质。本发明还公开了上述奥氏体不锈钢的制造工艺。本发明的不锈钢具有良好的蠕变性能、氧化性能、腐蚀性能等,具有良好的中子经济性和成本经济性,抗中子辐照肿胀性能良好,满足SCWR燃料包壳或堆内构件应用要求,为SCWR提供候选材料,此外,也可满足核反应堆温度、安全性、经济性不断提高的需要。
-
公开(公告)号:CN104795112A
公开(公告)日:2015-07-22
申请号:CN201510106346.4
申请日:2015-03-11
Applicant: 中国核动力研究设计院
Abstract: 本发明公开了一种CaO2掺杂UO2-10wt%Gd2O3可燃毒物及其制备方法。所述CaO2掺杂UO2-10wt%Gd2O3,由以下重量百分比的组分组成:CaO20-0.5wt%;Gd2O310wt%;余量为UO2。本发明还提供一种用于制备上述可燃毒物的方法,该方法工艺简单,成本低且制得的可燃毒物具有优良的晶粒尺寸、烧结密度及热导率。本发明通过在UO2-10wt%Gd2O3可燃毒物中掺杂CaO2,使得提高氧化钆浓度的可燃毒物仍具有优良的烧结密度、晶粒尺寸和热导率。
-
公开(公告)号:CN103449811B
公开(公告)日:2015-07-15
申请号:CN201310371402.8
申请日:2013-08-23
Applicant: 中国核动力研究设计院
IPC: G21C21/00 , C04B35/48 , C04B35/622
Abstract: 本发明公开了一种核电用ZrO2/Gd2O3复合陶瓷材料的共沉淀制备方法,本发明包括锆钆混合溶液预制备工艺以及锆钆混合沉淀物制备工艺等。以硝酸氧锆去离子水、三氧化钆粉、硝酸、氨水为原料,先进行溶解混合,再经过沉淀混合形成混合均匀的制备原料,再利用后续还原处理得到ZrO2/Gd2O3复合陶瓷材料,本发明对工艺设备没有苛刻要求,易于实现。真空烧结,烧结温度控制在1500℃~1650℃。按照本发明制备的ZrO2/Gd2O3复合陶瓷可燃毒物材料具有良好的烧结性能以及较好的微观组织、力学强度及致密度(理论密度大于96%T.D。)。
-
公开(公告)号:CN104568722A
公开(公告)日:2015-04-29
申请号:CN201510034433.3
申请日:2015-01-23
Applicant: 中国核动力研究设计院
IPC: G01N17/00
Abstract: 本发明公布了一种超临界状态下的腐蚀试验装置,包括固定安装在地面的容器组件,在容器组件内套装有加热炉,在加热炉内固定安装有釜体,釜体内部为圆柱形空腔结构,在釜体内安装有热电偶保护管、以及试件挂片,在釜体顶部开口处配置有釜盖,在釜盖上开设有一个通孔,在通孔内安装有电热偶,电热偶延伸到热电偶保护管内部。本发明将被检测的试验品挂在试件挂片上,通过加热炉进行加热,釜体内的温度升高,直至超临界条件下,整体的结构不变形,电热偶采集温度信号等,完成超临界条件下的腐蚀实验。
-
-
-
-
-
-
-
-
-