一种基于近场动力学方法的3D打印工艺数值模拟方法

    公开(公告)号:CN116442525A

    公开(公告)日:2023-07-18

    申请号:CN202211692664.X

    申请日:2022-12-28

    Abstract: 本发明涉及3D打印工艺仿真模拟技术领域,具体涉及一种基于近场动力学方法的3D打印工艺数值模拟方法,包括步骤一、建立近场动力学瞬态传热模型;步骤二、建立近场动力学生死物质点模型;步骤三、引入近场动力学键断裂机制;步骤四、建立基于近场动力学的3D打印工艺过程仿真模型;步骤五、根据3D打印工艺条件定义基本参数、边界条件和初始条件;步骤六、模拟计算并导出结果。本发明将3D打印过程中材料的累加视为一种标量场的变化过程,并采用0‑1来刻画标量场中物质点的生死状态,这样能够相当直观地从物理上描述3D打印的过程,结合显式计算方法,大大简化了数值模拟过程中每个时间步的计算量。

    一种类裂纹不连续区结构的疲劳损伤系数获取方法及装置

    公开(公告)号:CN114036792B

    公开(公告)日:2023-06-13

    申请号:CN202111312908.2

    申请日:2021-11-08

    Abstract: 本发明公开了一种类裂纹不连续区结构的疲劳损伤系数获取方法及装置,该方法包括:采用奇异单元网格划分法划分类裂纹尖端的网格,并构建类裂纹尖端应力有限元模型;采用所述类裂纹尖端应力有限元模型计算距类裂纹尖端特征距离的应力;在瞬态载荷和外载荷条件下,采用编译器软件,通过主循环瞬态极值组合和子循环瞬态峰谷值应力幅配对的方式计算疲劳损伤系数。本发明实现了类裂纹不连续区结构的疲劳损伤系数的计算,且计算准确度较高;根据计算得到的疲劳损伤系数,对类裂纹不连续区的疲劳损伤进行评定。本发明填补了类裂纹不连续区疲劳损伤系数计算的技术手段空白,可用于利用商用软件对核一级设备类裂纹不连续区的工程疲劳校核中。

    一种减少结构疲劳使用系数计算保守性的分析方法

    公开(公告)号:CN103853865A

    公开(公告)日:2014-06-11

    申请号:CN201210520887.8

    申请日:2012-12-07

    Abstract: 本发明涉及一种减少结构疲劳使用系数计算保守性的分析方法,其包括以下步骤:1.应用有限元分析软件获取分析对象的疲劳数据;2.从有限元分析软件的数据库中提取截面的交变应力分量、温度数据并存储;3.从有限元分析软件的疲劳数据中获取一次加二次应力强度Sn超过3Sm的截面;4.将获取的所述修正为将所述超过3Sm的截面的交变应力减去温度载荷导致的应力形成新的疲劳数据;5.经有限元分析软件得到机械载荷导致的交变应力强度Satmech;并从有限元分析软件的数据库中读取热载荷导致的交变应力强度Satther;6.分别获取热应力弹塑性修正因子Kether和机械应力的弹塑性修正因子Kemech,获取新的交变应力强度Sa';7.获得与所述新的交变应力强度Sa'对应的疲劳使用系数N。本发明效率高,结果可靠。

    一种基于环境损伤模型的腐蚀疲劳裂纹扩展寿命预测方法

    公开(公告)号:CN119692097A

    公开(公告)日:2025-03-25

    申请号:CN202411681957.7

    申请日:2024-11-22

    Abstract: 本发明提供了一种基于环境损伤模型的腐蚀疲劳裂纹扩展寿命预测方法,根据考虑最大应力和塑性应变的作用的疲劳损伤模型以及环境因子Cenv的影响,建立腐蚀疲劳损伤模型。利用低周疲劳试样和紧凑拉伸试样开展低周疲劳试验和腐蚀疲劳裂纹扩展试验,分别得到不同应力比下的低周疲劳数据和腐蚀疲劳裂纹扩展速率;将该损伤模型在有限元软件ABAQUS提供的USDFLD用户子程序接口编写为子程序,并开展腐蚀疲劳裂纹扩展仿真,预测标准紧凑拉伸试样在不同应力比下的腐蚀疲劳裂纹扩展速率。本发明兼顾了疲劳损伤模型和环境因子Cenv的影响,同时结合有限元软件ABAQUS的USDFLD子程序进行有限元模拟,实现了结构的腐蚀疲劳裂纹扩展模拟。该方法通用性强、易于掌握和实施。

    一种反应堆结构材料温度相关的本构模型构建方法及系统

    公开(公告)号:CN117542458A

    公开(公告)日:2024-02-09

    申请号:CN202311569314.9

    申请日:2023-11-22

    Abstract: 本发明公开了一种反应堆结构材料温度相关的本构模型构建方法及系统,涉及反应堆结构力学领域,其技术方案要点是:获取反应堆结构材料在不同温度下的应力应变曲线;在Chaboche模型中引入温度相关项和改进的非线性随动强化项,得到待拟合的与温度相关的本构模型;根据应力应变曲线,确定反应堆结构材料的塑性强化模量与累积塑性应变的关联关系,采用指数函数拟合所述关联关系,得到在不同温度下塑性强化模量关系式中的材料参数;采用二次函数拟合在不同温度下塑性强化模量关系式中的材料参数,获得材料参数与温度相关的函数表达式;将所述材料参数与温度相关的函数表达式代入待拟合的与温度相关的本构模型,得到与温度相关的本构模型。

Patent Agency Ranking