-
公开(公告)号:CN120027836A
公开(公告)日:2025-05-23
申请号:CN202510332870.7
申请日:2025-03-20
Applicant: 哈尔滨工程大学
IPC: G01D5/353
Abstract: 本发明属于传感器技术领域,具体涉及一种基于光敏聚合胶的温度-折射率双参量光纤传感器及其制备方法,包括有光源模块、传感探头模块和数据采集分析模块,光源模块包括有超连续光源、2×2光纤耦合器和扇入扇出模块,超连续光源连接至2×2光纤耦合器的端口一,2×2光纤耦合器的端口三和端口四连接至扇入扇出模块。本发明利用光敏聚合胶端面生长的方式形成反射镜进而构成F‑P谐振腔,光束在反射镜和纤芯端面之间来回反射构成F‑P谐振腔,结合PDMS材料涂覆作为温度传感单元,而另一个作为折射率传感单元,每个纤芯都可以独立工作,所以该结构的传感器可以同时测量温度和折射率的数据,且可以避免该光纤结构受到温度的影响。
-
公开(公告)号:CN119023057A
公开(公告)日:2024-11-26
申请号:CN202411154711.4
申请日:2024-08-22
Applicant: 哈尔滨工程大学
IPC: G01H9/00
Abstract: 本发明属于光声换能技术领域,具体涉及一种收发一体的光纤光声换能器与光纤水听器装置,包括光纤光声换能器和光纤水听器,所述光纤光声换能器包括纳秒脉冲激光器、透镜、扇入扇出模块和双芯光纤,所述双芯光纤一侧开设有梯形槽,所述梯形槽内均匀填充有吸收层,所述双芯光纤中的单根纤芯均为独立单模光纤,其中一根所述单模光纤通过扇入扇出模块与纳秒脉冲激光器连接;所述纳秒脉冲激光器波长为532nm、脉宽10‑200ns、重复频率为1‑100kHz、功率为400‑800mW。本发明能够将超声信号的发出与接收集中在了一根光纤上,做到了收发一体,并且收发可以同时进行,在光路中,换能器产生的声波信号并不会对水听器产生影响。
-
公开(公告)号:CN113703517B
公开(公告)日:2023-06-13
申请号:CN202111021678.4
申请日:2021-09-01
Applicant: 哈尔滨工程大学
IPC: G06E3/00
Abstract: 本发明公开一种基数可调的多芯光纤算盘。该基数可调的多芯光纤算盘包括光脉冲源模块、多芯光纤算盘、探针激光源模块以及算子采集与触发模块。以利用倏逝场耦合的方式,基于相变材料构造多芯光纤算盘,不同纤芯代表不同的“位”,各“位”的值由光脉冲源模块控制,各光脉冲源发出光脉冲实现算子的拨动,低“位”值拨满后状态被重置,高“位”拨动增加一级,通过探针激光源模块实时监测各个“位”的值,算子采集与触发模块实现光学算子的拨动以及“位”值的电信号获取,此外,对光脉冲源模块不同形式的触发控制可实现不同基数的光子算盘运算。该基数可调的多芯光纤算盘以光学手段实现算盘及其运算,相比于基于电子的计算系统运算速度更快、稳定性更高、抗干扰能力更强,本发明提供一种全新的计算实现手段。
-
公开(公告)号:CN113654478B
公开(公告)日:2022-06-17
申请号:CN202111020405.8
申请日:2021-09-01
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种基于时间门控的多通道光纤应变解调方法。包括:窄线宽光源模块、温度参考FBG‑FP模块、应变传感FBG‑FP阵列模块、光源反馈稳频模块以及边带调制反馈稳频模块,边带调制反馈稳频模块核心为时间门控的多通道反馈控制算法。将窄线宽光源反馈锁定至温度参考FBG‑FP上;利用单边带调制器生成边带光信号,由压控振荡器提供边带调制的射频信号,对压控振荡器的时间门控来遍历每个应变传感FBG‑FP通道;在时间门控的多通道反馈控制算法中,每个通道会分配控制周期,在该控制周期内需完成PDH误差信号的处理与锁定,实现多通道应变信号的高精度、高分辨率实时测量,更为高速、低噪声以及低成本。
-
公开(公告)号:CN113900277A
公开(公告)日:2022-01-07
申请号:CN202111020356.8
申请日:2021-09-01
Applicant: 哈尔滨工程大学
IPC: G02F1/01
Abstract: 本发明提供一种基于相变材料的光纤环开关。该基于相变材料的光纤环开关由两只拉锥型一分二光纤耦合器及光纤相变材料单元组成。将两只拉锥型一分二光纤耦合器的直通臂焊接成光纤环结构,在光纤环中单模光纤侧壁制作凹槽结构,依次镀相变材料薄膜及防氧化薄膜,构成光纤相变材料单元。光纤环开关有四个端口,其中两个对角线端口分别注入光脉冲对光纤相变材料单元进行调制与探测连续光对光纤环开关的状态进行监测。当高能窄带脉冲注入时,光纤环处于“闭合”状态;当低能宽带脉冲注入时,此时光纤环处于“断开”状态。该基于相变材料的光纤环开关作为一种光学调控光开关器件,具有切换速度更快和抗干扰能力更强的优点。
-
公开(公告)号:CN113702908A
公开(公告)日:2021-11-26
申请号:CN202111020401.X
申请日:2021-09-01
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种基于PDH解调技术的高精度三维声源定位方案。方案主要包括:窄线宽光源模块、高精度三维声源光纤FBG‑FP探头模块、PDH解调反馈控制模块。主要的方案是:窄线宽光源模块中种子源经过单边带调制提供三个不同边带频光信号,注入高精度三维声源光纤FBG‑FP探头模块,三个不同边带频光信号与三个轴向的声音敏感FBG‑FP对应,光信号经过反射后注入PDH解调反馈控制模块,根据获取的三个轴向的PDH误差信号对三个边带频的射频源进行反馈控制,当有声源信息时,三个轴向的反馈控制输出在时序及强度上存在差异,经过解算后实现三个轴向声源实时高精度监测。这种方案以高精细FBG‑FP为传感核心,使得单轴声源监测分辨率、精度得到提升,进而极大地提高了三维声源定位的准确度,具备较大的应用前景。
-
公开(公告)号:CN112923863A
公开(公告)日:2021-06-08
申请号:CN202110105072.2
申请日:2021-01-26
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种二次变频光纤光栅谐振峰跟踪探测系统,激光经由Y波导被一高速信号调制(>20MHz)后加载到光纤光栅中,其返回信号经光电探测器转换为电信号后,由模拟混频器进行一次变频。之后由数字采集系统进行采集并通过算法实现二次变频,载波恢复,信号解调以及反馈控制。其中,解调回路使用改进的COSTAS环路,可以消除高速信号在线路上的时延造成的相位失配。相比于普通的PDH解调方法,此解调方案前端使用模拟混频器进行下变频,可以不受A/D采样速度的限制,下变频到中频后,可以有效避开电路系统的1/f噪声,提升信号的信噪比。此种系统可以工作在几MHz到几百MHz的调制信号下,具有较为广泛的适用性。
-
公开(公告)号:CN112134136A
公开(公告)日:2020-12-25
申请号:CN202010995292.2
申请日:2020-09-21
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种使用快慢速锁定的光纤激光器稳频系统,包含有超窄线宽光纤激光器、声光调制器、相位调制器、正交解调装置以及反馈控制装置。其特征是:由超窄线宽光纤激光器输出的激光依次经过声光调制器、相位调制器调制。经环形器输入进光纤光栅法布里‑泊罗干涉腔后,经正交解调回路解调。慢速PID控制器用以调节光源波长,补偿低频信号;快速PID控制器用以调节声光调制器,补偿高频信号。该方案能够克服光纤激光器调频响应以及调频带宽的限制,实现光纤激光器输出波长与参考谐振腔之间的稳定跟踪。
-
公开(公告)号:CN120063147A
公开(公告)日:2025-05-30
申请号:CN202510338765.4
申请日:2025-03-20
Applicant: 哈尔滨工程大学
Abstract: 本发明属于光纤传感技术领域,具体涉及一种基于注入锁定的光锁相环DFB应变传感器,包括PDH注入锁定模块、光锁相环模块、应变传感分布式反馈光纤激光器模块,PDH注入锁定模块包括可调谐窄线宽激光器、第一光纤耦合器、相位调制器、光纤环形器、单通道光电探测器、锁相放大器、第一环路滤波器以及信号发生器,光锁相环模块包括声光调制器、第二光纤耦合器、平衡光电探测器、晶体滤波器、幅值检波器单元、第二环路滤波器以及直接数字频率合成器。本发明能够实现分布式反馈光纤激光器的高分辨应变实时测量,有效的解决了传统基于分布式反馈光纤激光器应变传感方案的自身自由运转噪声干扰,具有更高的应变测量分辨率。
-
公开(公告)号:CN120048311A
公开(公告)日:2025-05-27
申请号:CN202510422553.4
申请日:2025-04-03
Applicant: 哈尔滨工程大学
Abstract: 本发明属于智能光纤器件技术领域,具体涉及一种纤内调制的全光回音壁忆阻器,包括单模光纤、渐变多模光纤、光纤回音壁、光学相变材料薄膜、防氧化层薄膜、微纳探测光纤、扩束光束以及汇聚光束;单模光纤后焊接一段渐变多模光纤,在渐变多模光纤尾端熔融烧制光纤回音壁,依次在光纤回音壁表面镀光学相变材料薄膜、防氧化层薄膜,构建光纤回音壁忆阻器,利用微纳探测光纤探测回音壁的忆阻状态。本发明设计的全光回音壁忆阻器,以纤内调控的方式实现光纤回音壁的非易失性存储状态的调控,攻克当下光纤回音壁忆阻器依赖空间光调控的局限性,具备高速、低功耗、抗电磁干扰等特性,为光子忆阻器带来一种新型器件构型,助力光子神经拟态计算的发展。
-
-
-
-
-
-
-
-
-