Abstract:
전기화학적탄소전극의특성과표면특성이개질된수처리용복합전극이개시되어있다. 상기제올라이트복합전극은활물질 65 내지 88 중량%, 탄소를포함하는전도성물질 10 내지 25 중량% 및바인더 2 내지 10중량%를포함하는탄소전극과상기탄소전극의표면에코팅된금속산화물박막을포함한다. 상술한구성을갖는복합전극이적용되는수처리장치는전기화학적특성의변화없이이온의제거효율이증가되는고효율의수처리시스템을구축할수 있다.
Abstract:
전기화학적 탄소전극의 특성과 제올라이트의 선택적 이온교환특성을 모두 갖는 수처리용 제올라이트 복합전극이 개시되어 있다. 상기 제올라이트 복합전극은 제올라이트 입자 65 내지 88 중량%, 탄소를 포함하는 전도성 물질 10 내지 25 중량% 및 상기 제올라이트 입자와 전도성 물직을 서로 결합시키는 바인더 2 내지 10중량%를 포함하는 구성을 갖는다. 상술한 구성을 갖는 복합 전극이 적용되는 수처리 장치는 제올라이트의 연수화 기능과 전기화학적 특성을 융합함으로써 기존 공정이 갖고 있던 재생방법 및 선택성을 향상시켜 고효율의 수처리 및 연수 시스템을 구축할 수 있다. 또한, 상기 수처리 장치는 낮은 전기에너지를 이용하기 때문에 가동이 용이하고 소형화가 가능하며, 종래 기술에 비해 낮은 비용으로 구현 가능하다.
Abstract:
Disclosed is a zeolite composite electrode for water treatment having both the electrochemical properties of a carbon electrode and the selective ion exchange properties of zeolite. The zeolite composite electrode comprises: 65 to 88 wt% of zeolite particles; 10 to 25 wt% of conductive materials including carbon; and 2 to 10 wt% of a binder for combining the zeolite particles and the conductive materials. The water treatment apparatus having the composite electrode applied thereto with the above-mentioned composition can build a high-efficiency water treatment and water softening system by merging the water softening function and electrochemical properties of zeolite and improving the regenerating method and selectivity of an existing process. Also, the water treatment apparatus is easy to operate and can be miniaturized because the water treatment apparatus uses a small amount of electric energy. And the water treatment apparatus can be realized at a lower cost than an existing technique.
Abstract:
The present invention relates to a method for measuring reactive oxygen species generated by nanoparticles. A reactive oxygen species production reaction is performed by radiating light sources after injecting a reactive oxygen species probe material into nanoparticle suspension. The ionic strength of the nanoparticle suspension is enhanced by adding ion sources. At this time, the ion sources may have at least 50mM ionic strength. After the nanoparticles are separated from the suspension through natural sedimentation or centrifugation, absorbance is measured using a detector. [Reference numerals] (AA) Energy source; (BB) Reactor (nanomaterials +probe materials); (CC) Ion source; (DD) Settling tank or centrifugation tank; (EE) Detector
Abstract:
Provided is a method for recovering metal from a waste battery. The method for recovering metal from a waste battery comprises separating electrodes from a waste battery; extracting metal ions to be recovered from the electrodes; combining the metal ions in an extracting solution with a first electrode while dipping the first electrode and a second electrode in the extracting solution, wherein the first electrode includes the metal to be recovered and the second electrode includes a different metal from the metal to be recovered; charging the first and second electrodes to separate the metal ions from the first electrode while dipping the first and second electrodes in a different concentrate from the extracting solution; and recovering the metal from the concentrate. Accordingly, the method is capable of improving efficiency and lowering harmfulness in a metal recovery process.
Abstract:
Provided is a method for recovering metal from a solution. According to the present invention, ions of metal to be recovered of a first solution are coupled to a first electrode in a state where the first electrode containing the metal to be recovered and a second electrode containing other metal different to the metal to be recovered are submerged in the first solution containing the metal ions to be recovered. The first and second electrodes are charged in the state of being submerged in the first and second solutions so that the metal ions to be recovered can be separated from the first electrode. The metal to be recovered is recovered from the second solution, thereby enhancing the efficiency and harmfulness of a metal recovering process. [Reference numerals] (S10) Couple metal ions to be recovered from a first solution to a first electrode;(S20) Separate the metal ions to be recovered from the first electrode in a second solution;(S30) Recover the metal to be recovered
Abstract:
PURPOSE: A method of measuring a bio film is provided to be able to monitor the growth of a bio film in real time by perceiving the microorganism amount of the bio film without affecting the growth of the bio film. CONSTITUTION: A method of measuring a bio film is as follows. A first bio film is formed(S10). While the first bio film is formed, a plurality of impedance data is obtained by measuring the impedance of the first bio film using the electrochemical impedance spectroscopy(S20). A microorganism amount data is obtained by measuring the microorganism amount of the first bio film corresponding to the impedance of the first bio film(S40). The impedance-microorganism amount data is obtained by corresponding the impedance data to the microorganism amount data. The impedance of a second bio film is measured (S50). The microorganism amount of the second bio film at the impedance of the second bio film is derived using the impedance-microorganism amount data(S60).
Abstract:
리튬을 회수하기 위한 방법이 제공된다. 상기 방법은, 용액으로부터 리튬을 흡착하는 단계, 상기 흡착된 리튬을 이온으로 추출하여 추출 용액을 형성하는 단계, 리튬을 포함하는 제1 전극 및 상기 리튬과 다른 금속을 포함하는 제2 전극을, 상기 추출 용액에 침지한 상태에서, 상기 추출 용액의 리튬 이온을 상기 제1 전극에 결합시키는 단계, 상기 제1 전극 및 상기 제2 전극을 상기 추출 용액과 다른 농축 용액에 침지한 상태에서 충전하여, 상기 제1 전극으로부터 상기 리튬 이온을 분리하는 단계 및 상기 농축 용액으로부터 상기 리튬염을 형성하는 단계를 포함한다.