Abstract:
PURPOSE: A liquid refrigerant concentration measuring device of temperature alternating evaporation mixed refrigerants, a method, and a heat pump of an absorption type, a single stage compression-absorption type, and a two stage compression-absorption type including the same are provided to reduce costs and to include a simple structure by being comprised of only a temperature sensor and a pressure sensor as the configuration to measure concentration. CONSTITUTION: A liquid refrigerant concentration measuring device of temperature alternating evaporation mixed refrigerants comprises a container (60), a temperature sensor (82), a pressure sensor (84), and a control unit (70). The liquid mixed refrigerants fill an internal storage space of the container by being drawn into one side, and the filled liquid refrigerant mixed refrigerants flow out to the other side when the temperature alternating evaporation mixed refrigerants in which the two kinds of the refrigerants including different evaporation pressure are mixed is in a saturated condition. The temperature sensor measures the temperature of the liquid mixed refrigerants. The pressure sensor measures the pressure of the container or the pressure of the saturated condition. The control unit includes a memory unit and a calculation unit. The memory unit stores data base on the relation between the temperature, the humidity, the concentration, and the saturated vapor pressure in the saturated condition of the liquid mixed refrigerants. The calculation unit assumes the humidity of the liquid mixed refrigerants to be a predetermined humidity and calculates the concentration of the liquid mixed refrigerants from the data base according to the temperature and the pressure measured by the temperature sensor and the pressure sensor.
Abstract:
PURPOSE: A thermal energy network system is provided to improve an accessibility of a thermal energy by being transferable both directions a thermal energy between a first thermal station and a second thermal station, and by the first thermal station and the second thermal station supplying a respective necessary thermal energy to the first demanding place and the second demanding place. CONSTITUTION: A thermal energy network system comprises a first thermal station(100) and a second thermal station(200). The first thermal station saves a first thermal energy by using a first heat source(150), and supplies the first heat source to a first demanding place(160) used for a dwelling or for a commercial. The second thermal station saves a second thermal energy by using a second heat source(250), and supplies the second heat source to a second demanding place(260) used for an industry. The first thermal station and the second thermal station manage a base load of a thermal energy network. The first thermal energy and the second thermal energy are delivered between the first thermal station and the second thermal station as necessary. A district heating facility(300) managing a partial load of the thermal energy network is more included. The district heating facility gives and takes a thermal energy with the first thermal station or the second thermal station as necessary. [Reference numerals] (100) First thermal station; (150) First heat source; (160) First demanding place; (200) Second thermal station; (250) Second heat source; (260) Second demanding place; (300) District heating facility
Abstract:
본 발명은 열선의 장력 및 기울기를 고려하여 측정오차를 최소화함으로써 나노유체의 열전도도를 정확하게 측정할 수 있는 비정상열선법을 이용한 나노유체의 열전도도 측정장치에 관한 것으로서, 상하로 이격된 상부판 및 하부판; 상기 상부판 및 상기 하부판 사이에 설치된 실린더; 상기 실린더 내에 설치되고 상하 이동이 가능한 가동판; 상기 상부판을 관통하도록 결합된 제1고정수단; 상기 가동판의 상면에 설치되고, 상기 제1고정수단과 동일한 연직선 상에 위치하는 제2고정수단; 및 상기 제1고정수단 및 상기 제2고정수단에 양단이 각각 고정된 열선을 포함하는 비정상열선법을 이용한 나노유체의 열전도도 측정장치를 제공한다.
Abstract:
PURPOSE: An apparatus and a method for measuring the dynamic thermal conductivity of microstructured fluid are provided to measure accurate dynamic thermal conductivity by minimizing heat loss. CONSTITUTION: An apparatus(100) for measuring the dynamic thermal conductivity of microstructured fluid comprises an upper fixing plate(110a), a lower fixing plate(110b), a lower body(150b), a rotation plate(120), a shaft(140), a heater, and a thermocouple. The upper and lower fixing plates are vertically separated from each other. The lower body forms the side surface of the space formed between the upper and lower fixing plates. The rotation plate is installed between the upper and lower fixing plates. The shaft is coupled to the rotation plate through the upper fixing plate. The heater is installed on the top of the fixing plate. The thermocouple is installed in the upper and lower fixing plates.
Abstract:
본 발명은 콤팩트 설비 유니트용 일체형 열교환기에 관한 것으로서, 더욱 상세하게는 지역난방용 설비 유니트에 설치되는 난방용 열교환기와 급탕 재열용 열교환기 및 급탕 예열용 열교환기가 하나의 열교환기 전열판에 구획되어 일체형으로 형성됨으로써, 열교환기가 콤팩트하게 형성되어 설치 면적이 줄어들며, 그로 인해 설치위치에 제약을 받지 않아 설비공사비용과 시간이 절감되는 특징이 있다.
Abstract:
본 발명은 콤팩트 설비 유니트용 일체형 열교환기에 관한 것으로서, 더욱 상세하게는 지역난방용 설비 유니트에 설치되는 난방용 열교환기와 급탕 재열용 열교환기 및 급탕 예열용 열교환기가 하나의 열교환기 전열판에 구획되어 일체형으로 형성됨으로써, 열교환기가 콤팩트하게 형성되어 설치 면적이 줄어들며, 그로 인해 설치위치에 제약을 받지 않아 설비공사비용과 시간이 절감되는 특징이 있다.
Abstract:
PURPOSE: An extraction type oil recovery device is provided to prevent the oil left behind by mixed with the absorbent. CONSTITUTION: An extraction type oil recovery device has an inlet port(11) which is formed in one side so that the working fluid of the heat pump system mixture flow in, a case(10) having plural vents(12,13,14) to output refrigerant and oil extracted from the flow in mixture, plural partition walls(20,21) installed in the case to divide the inside of the case, a suction part(30) discharging oil extracted from the mixture.
Abstract:
본 발명은 해안 지열 이용 일체용 캐스케이드 히트펌프 시스템에 관한 것으로서, 보다 상세하게는 단하나의 히트펌트 시스템을 이용하여, 냉방, 단단난방, 2단난방 모두에 사용할 수 있도록 하고, 이를 위해 다수개의 3방변 밸브와, 증발기, 압축기, 응축기, 팽창밸브, 캐스케이드 열교환부를 구비함과 동시에, 상기 구성요소들이 일체형 유닛으로 이루어진 시스템을 4개의 수배관 연결만으로 이용이 가능하도록 구성하며, 해안 지열을 이용하기 위해 열원으로 해수가 사용되도록 한 해안 지열 이용 일체용 캐스케이드 히트펌프 시스템에 관한 것이다. 해안 지열, 캐스케이드, 히트펌프, 해수, 냉방, 단단난방, 2단난방
Abstract:
A micro anemometer and its manufacturing method are provided to enhance a response time by reducing heat capacity using an enhanced arrangement of the micro anemometer. An oxide layer(102) is formed on a silicon substrate(101). A nitride layer(103) is deposited on the oxide layer. Two or more gold pads(104) are formed on the nitride layer. A conic gold supporter(108) is formed on the gold pad by using an electroplating process. A platinum wire sensor(109) is formed on the conic gold supporer. The platinum wire sensor is heated through the conic gold supporter. An air speed is measured by measuring a resistive value according to the variation of temperature of the platinum wire sensor due to the flow field passing the platinum wire sensor.