Abstract:
PURPOSE: A static switch and an intelligent protective relay are provided to improve the quality of power by integrating an energy storage device. CONSTITUTION: A battery and a super capacitor are both connected to a DC terminal(31). The battery and the super capacitor perform charging and discharging according to the requirement specification from an electric power system. The battery and the super capacitor perform charging and discharging according to the command from a control device. A DC/AC convertor(30) is installed between the DC terminal and a transformer. Both directional DC/AC converters(32,33) supply AC electric power to the electric power system. [Reference numerals] (19) Storage battery; (20) Super capacitor; (30) AC/DC; (32,33) DC/DC; (34) Control device
Abstract:
PURPOSE: A building microgrid system and an operating method thereof are provided to improve the reliability of power supply by supplying power by itself when a power system is trouble. CONSTITUTION: A new regenerative energy source(110) outputs maximum output according to a weather condition. A commercial ESS(Energy Storage System)(120) supplies power to a building load. An emergency ESS(130) is not connected to a power system and stably supplies power to the building load. A static switch(140) automatically blocks a building microgrid system(100) from a power system by determining the fault of the power system. An automatic load switch(150) automatically switches a physical connection to supply power from the new regenerative energy source to the building load.
Abstract:
본 발명은 출력안정을 위한 풍력 발전시스템 및 그 제어방법에 관한 것으로, 풍력발전설비; 상기 풍력발전설비의 출력변동 완화 및 주파수 보상제어가 되도록 에너지저장장치의 출력 명령치를 결정하는 통합제어부; 및 미리 저장된 에너지를 이용하여 상기 통합제어부의 상기 출력 명령치에 추종하여 전력을 흡수/방출 할 수 있는 에너지저장장치를 포함한다. 이와 같은 본 발명을 제공하면, 풍력발전설비의 출력변동을 상시 완화시킴으로써 주파수 및 전압과 같은 전력품질의 저하를 방지할 수 있으며, 전력계통 내 각종 상정사고로 인한 전력동요를 억제함으로써, 풍력발전 설비의 도입용량을 보다 증대시킬 수 있다. 풍력발전, 에너지저장장치, 출력변동, 주파수 제어
Abstract:
PURPOSE: A weather-load simulator is provided to shorten a time for testing the performance of a system and development time by applying real driving conditions to the system. CONSTITUTION: A weather-load simulators(550) samples weather conditions and load conditions. The weather conditions include measured temperature, irradiation, and wind velocity. The load conditions include power, voltage, and current. A process unit processes the sampled information.
Abstract:
무변압기형 계통연계 태양광 발전 시스템의 전력변환장치에 대한 것으로, 전력변환장치를 구성하는 DC-DC 컨버터와 DC-AC 컨버터 사이의 DC 링크 전압을 태양전지어레이로부터 발생되는 출력 전력 정보를 이용하여 현재 발생되는 출력에 해당하는 전력이 계통으로 출력되도록 제어하는 무변압기 계통연계 태양광 발전 시스템의 전력변환장치에 대한 것이다. 본 발명에 따른 무변압기형 계통연계 태양광 발전 시스템의 전력변환장치는 태양광을 직류전력으로 전환하는 태양전지어레이가 최대 출력점으로 운전하도록 최대 출력점 제어를 수행하고, 태양전지어레이에서 발생된 직류전압을 승압 또는 강압하여 출력하는 DC-DC 컨버터; 상기 DC-DC 컨버터에서 출력된 전압을 상용 주파수의 교류전력으로 변환하여 배전 계통으로 출력하는 DC-AC 컨버터;를 포함하되, 상기 DC-AC 컨버터는 배전계통전압정보와 배전계통전류정보를 이용하여 상기 DC-AC 컨버터의 출력전류를 제어하기 위한 제어값을 출력하는 제어값 출력 모듈과, 상기 태양전지어레이의 출력전력과 배전계통전압정보를 이용하여 전류기준값을 출력하는 전류기준값 출력 모듈과, 상기 DC-AC 컨버터에 입력되는 전압정보 및 미리 설정된 운전범위정보를 이용하여 보상전류기준값을 계산하는 DC전압제한 모듈과, 상기 전류기준값과 보상전류기준값 및 상기 제어값 출력 모듈의 제어값을 이용하여 DC-AC 컨버터의 출력전력을 제어하는 전류제어 모듈을 포함한다. 본 발명에 따른 무변압기형 계통연계 태양광 발전 시스템의 전력변환장치는 전류의 고조파를 저감시키고, 외부 환경 조건의 변화에 의해서 계통 출력이 급격하게 변화하지 않으며, 시스템의 동작 안정성을 확보할 수 있는 효과가 있다. 태양전지어레이, 전력변환장치, 무변압기형, DC/AC 컨버터
Abstract:
마이크로그리드를 경제적으로 운영하기 위해서는 각 시점의 부하를 고려하여 전력계통에서 전력을 구매하거나, 혹은 자체 분산전원을 발전하여 전력을 판매할 수 있다. 이때, 마이크로그리드 운영자 입장에서는 최대의 이익을 얻기 위해서 부하, 전력 구매 및 판매가격, 열병합 시스템 발전비용을 비교하여 가장 유리한 방향으로 열병합 발전의 출력을 조정하여야 한다. 본 발명에서는 온라인상에서 열병합 발전 설비를 고려한 마이크로그리드의 최적운전 방법을 제안하였다. 열병합 발전, 마이크로그리드, 최적 운전
Abstract:
PURPOSE: A power conditioning wind power generation system using an energy storage device and a control method thereof are provided to achieve optimum charge/discharge of the energy storage device through real-time output monitoring for a wind power generation device. CONSTITUTION: A power conditioning wind power generation system comprises a wind power generation device(100), an integrated control unit(500), and an energy storage device(400). The integrated control unit determines an output command value of the energy storage device in order to reduce changes in output and compensate frequency of the wind power generation device. The energy storage device absorbs and discharges electric power according to the output command value of the integrated control unit using previously stored energy. The energy storage device includes a power conversion device and one of a battery, a superconductive storage unit, a flywheel, and a super capacitor.
Abstract:
PURPOSE: An operation reserve supply system of an electric power system and a control method thereof are provided to extend a replacement period of an energy storage device by reducing the frequencies of charge/discharge operations of the energy storage device. CONSTITUTION: A plurality of DC/DC converters(20) is connected to an energy storage device(10) in serial/parallel. An energy storage device is one of a battery, a super capacitor, and a super conductive storage device. A DC/AC inverter(30) transfers the output inputted from the DC/DC converter to the electric power system. A controller(40) generates a first frequency operation reserve power in the malfunction of the system. The controller includes a voltage controller, a frequency reserve controller, a phase controller, and a switching controller.
Abstract:
A method of simulating a three-phase voltage and a three-phase current from one-phase power and an apparatus for controlling a power converter in a one-phase distribution generation system are provided to overcome a limitation of a frequency response of an alternating current control system and a difficulty in independent control of effective power or reactive power. A method of simulating a three-phase voltage(92) and a three-phase current(93) from one-phase power includes the steps of: (a) sampling a current(91) outputted from the one-phase power and a voltage(90) of a power system electrically connected to the one-phase power; and (b) extracting three-phase voltage component values and current component values based on sampling voltage values and current values sampled in the step(a). The step(b) includes the steps of: (b-1) storing the sampling voltage values and current values detected in the step (a) for more than one cycle of the power-based voltage; and (b-2) selecting voltage values and current values earlier than and later than the voltage by 1/3 cycle from the stored voltage values and current values. Two look-up tables(97,98) for the current and the voltage are applied so as to simulate three phases from one-phase input values.