Abstract:
본 발명은 전기자동차용 등 대형 리튬 2차 전지용 음극활물질로서 각광받고 있는 실리콘계 음극활물질 전극의 제조방법에 관한 것으로, 더욱 상세하게는 전기폭발법을 이용하여 나노크기의 실리콘계 음극활물질 나노복합체를 제조하고, 실리콘계 금속이온재료 복합체의 종류와 함량의 조절, PAA 고강도바인더를 적용한 개발 및 음극활물질 전극 표면에 리튬 금속을 첨가하여 초기 비가역용량의 해소를 통해서 우수한 전지특성을 나타내는 실리콘계 복합체인 Si-C 나노 복합체 음극활물질을 포함하는 리튬이차전지를 제공한다. 본 발명에 따른 제조방법은 간단한 방법으로 정량적 초기 Ah 효율의 실리콘계 복합체 Si-C 나노 복합체 음극활물질을 제조할 수 있으며 대량 생산이 용이하고 경제적일 뿐만 아니라, 본 발명의 Si-C 나노 복합체 음극활물질을 적용한 리튬이차전지는 고출력, 고에너지 및 장수명 특성을 제공한다.
Abstract:
본 발명은 리튬 박막을 삽입하여 초기 비가역을 억제한 실리콘계 음극활물질 전극 및 이의 제조방법 및 이를 구비한 리튬이차전지에 관한 것이다. 본 발명의 리튬이차전지는 음극활물질을 포함하는 음극은 실리콘계 음극활물질에 폴리아크릴릭액시드(PAA:polyacrylic acid) 고강도 결합제 및 도전재가 혼합되어 제조된 실리콘계 음극 활물질 전극 표면에 초기 비가역 용량 해소를 위하여 리튬 금속을 첨가한 리튬이차전지를 기술적 요지로 한다.
Abstract:
The present invention relates to a zinc anode active material having a lithium film inserted to inhibit initial irreversibility, a manufacturing method thereof and a lithium secondary battery comprising the same. The lithium secondary battery according to the present invention is a lithium secondary battery having a lithium film inserted to solve an initial irreversible specific capacity on the surface of the anode active material electrode produced by mixing a Zn-In-Ni composite anode active material with an aqueous binding agent including Styrene Butadiene Rubber (SBR) and Carboxy Methyl Cellulose (CMC), and a conducting agent. [Reference numerals] (AA) Initial discharge specific capacity, mAh/g;(BB) Initial irreversible specific capacity;(CC) Initial Ah efficiency;(DD) Initial Ah efficiency, mAh/g;(EE) lithium intake amount, %
Abstract:
The present invention relates to a method for manufacturing a tin-based anodal active material electrode spotlighted as an anodal active material for a large lithium secondary battery used for an electric vehicle etc. and, in particular, to a lithium secondary battery comprising a Sn-Co-Fe-C anodal active material which is a tin-based composite having an excellent battery property by solving an initial irreversible capacity in the process of controlling the kind and content of a tin-based metal ion material composite, applying an SBR-CMC water mixed binder, and adding lithium to the surface of the anodal active material electrode after producing the tin-based anodal active material with a uniform chemical composite using a Sol-Gel method. The manufacturing method according to the present invention can manufacture by a simple method the Sn-Co-Fe-C anodal active material which is a tin-based composite having a quantitative initial Ah efficiency, and facilitates mass production. The lithium secondary battery having the Sn-Co-Fe-C anodal active material according to the present invention applied thereto has properties of high output, high energy and long lifetime. [Reference numerals] (AA) First discharge specific capacity (mAh/g);(BB) First discharge specific capacity;(CC) First Ah efficiency;(DD) First Ah efficiency (%);(EE) Lithium intake amount (%)
Abstract:
PURPOSE: A manufacturing method of a Sn-Co-Fe-C composite negative electrode active material is provided to easily manufacture a large amount of a tin-based composite Sn-Co-Fe-C negative electrode active material with excellent cycle performance and specific capacity. CONSTITUTION: A manufacturing method of a Sn-Co-Fe-C composite negative electrode active material comprises: a step of mixing tin metal salt, cobalt metal salt, iron metal salt and graphite into a distilled water; a step of forming a reductant/metal ion composite sol by mixing at 70-90 °C; a step of forming reductant/metal ion composite gel by heating the sol at 100-120 °C; and a step of heat treating the reductant/metal ion composite gel. [Reference numerals] (AA) Sn(II); (BB) Co(II); (CC) Fe(II); (DD) Graphite; (EE) Dissolving into a minimum amount of distilled water at 80°C; (FF) Sn-Co-Fe-C ion mixture solution; (GG) Ascorbic(2mole ratio) or Citric acid(1mole ratio); (HH) Ascorbic(2mole ratio); (II) N, N'-methylene-bis-acrylamide(2mole ratio); (JJ) (Sn-Co-Fe-C) aqueous solution; (KK) Sn-Co-Fe-C CAM or AAM sol-gel(1mole ratio); (LL) Drying(100°C, 12h); (MM) Sn-Co-Fe-C composite; (NN) Heat treatment(300°C, 5h, Ar); (OO) Sintering composite; (PP) Pulverizing; (QQ) Pulverizing sintering composite; (RR) Heat treatment(550-950°C), 3h, Ar, 5°C/min pulverizing and sorting; (SS) Sn-Co-Fe-C compound negative electrode active material