Abstract:
PURPOSE: Provided is a 3-electrode type hybrid power element having a lithium secondary battery and a supercapacitor in one cell, which has excellent performance than general lithium secondary batteries and is economical and practical and can be used for mobile communication. CONSTITUTION: The hybrid power element has the 3-electrode form by connecting a cathode(B) of the lithium secondary battery and one electrode(B) of the supercapacitor, as a common electrode, to a cathode and connecting a lithium metal anode(A) of the lithium secondary battery and the other electrode(C) of the supercapacitor to an anode. And the hybrid power element is produced by a process comprising the steps of: preparing a conductive polymer electrode(B) used as the common electrode by coating an electrode active material on both sides of a charge assembly and preparing a conductive polymer electrode(C) used as the electrode of the supercapacitor by coating an electrode active material on one side of a charge assembly; laminating the lithium metal electrode(A), a separator, the conductive polymer electrode(B), a separator, and the conductive polymer electrode(C); adding an electrolyte to the resultant; packing by using a material capable of vacuum heat packing.
Abstract:
A method of manufacturing a conducting polymer film including dissolving a lithium salt in an organic solvent; after the lithium salt is completely dissolved in the organic solvent, dissolving a conducting polymer in the organic solvent by adding the conducting polymer little by little in many separate doses into the organic solvent until obtaining a deep blue colored solution; and leaving the deep blue colored solution as it stands over seven days and coating it on a flat surface; and evaporating the solvent from the coated solution. It is possible to work the conducting polymer film in a very thin membrane and to control the thickness as required, since the polymer film can be formed directly from a solution. Furthermore, it is also possible to control the conductivity of the polymer film by varying the type of salts as used and the concentration thereof, and thus its applicability is very diverse as the purpose of using them, for example in electronic/electric components.
Abstract:
PURPOSE: A preparation method of VOPO4.2H2O used as a cathode material for lithium secondary batteries by ultrasonication is provided, which offers much shortened reaction time and fined particles compared with conventional method. CONSTITUTION: The preparation method of VOPO4.2H2O comprises the steps of: mixing V2O5, H3PO4 and H2O in a molar ratio of 1 : 40-50 : 500-610; ultrasonicating the mixture in a strength of 70-100W/cm¬2 for 10-15min; washing and decompression filtering; drying at room temperature. The resultant VOPO4.2H2O has 1-3micrometer size, 3.6V voltage and 135mAh/g discharge capacity. Also, the composition for a cathode material for lithium secondary batteries is prepared by mixing VOPO4.2H2O, acetylene black and polyethylene tetrachloride in a weight ratio of 60-80 : 15-25 : 5-15.
Abstract:
PURPOSE: A super capacitor for oxidation/restoration and a method of fabricating the capacitor are provided to remarkably reduce interfacial resistance and to simplify a capacitor fabrication process. CONSTITUTION: An electric active material(302) containing polyaniline doped with lithium is fabricated. The electrode active material is attached to a charge collecting layer(402) to fabricate an electrode plate. A polymer separator(501) is placed between two electrode plates and attached to the electrode plates. The electrode active material is directly coated on the charge collecting layer and dried to form the electrode plate. The polymer separator is formed of a mixture of acetone and PVDF dissolved in the acetone.
Abstract:
PURPOSE: Provided are a polyelectrolyte filled with titania having size of nanometer, having high ion conductivity and low interfacial resistance, and a method for producing the same. CONSTITUTION: The polyelectrolyte is produced by the steps of (i) dissolving a copolymer of vinylidene fluoride and hexafluoropropylene, and titania particles of nanometer size in solvent, so as to form a polymer film; and (ii) impregnating the polymer film with electrolyte solution. The solvent is acetone or tetrahydrofuran. The electrolyte solution is a mixture of lithium salt and an organic solvent. The lithium salt is at least one selected from the group consisting of LiClO4, LiBF4, LiAsF6, LiCF3SO3 and LiN(CF3SO2)2. The organic solvent is selected from the group consisting of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, and mixture thereof.
Abstract translation:目的:提供一种填充有纳米尺寸,具有高离子传导性和低界面电阻的二氧化钛的聚电解质及其制造方法。 构成:通过以下步骤制备聚电解质:(i)将偏二氟乙烯和六氟丙烯的共聚物和纳米尺寸的二氧化钛颗粒溶解在溶剂中,以形成聚合物膜; 和(ii)用电解质溶液浸渍聚合物膜。 溶剂是丙酮或四氢呋喃。 电解质溶液是锂盐和有机溶剂的混合物。 锂盐是选自LiClO 4,LiBF 4,LiAsF 6,LiCF 3 SO 3和LiN(CF 3 SO 2)2中的至少一种。 有机溶剂选自碳酸亚乙酯,碳酸亚丙酯,碳酸二甲酯,碳酸二乙酯,碳酸甲乙酯及其混合物。
Abstract:
PURPOSE: A method for forming polyaniline powder having lithium salt doped, and a method for preparing electrode active material and a super capacitor using it are provided to form polyaniline conductive polymer powder having lithium salt doped and prepare electrode active material and a super capacitor using the polyaniline conductive polymer powder. CONSTITUTION: First, non-conductive polyaniline powder is prepared. Then, lithium salt solution is prepared. Next, the non-conductive polyaniline powder and the lithium salt solution are mixed, whereby lithium salt is doped into the non-conductive polyaniline powder. Then, the polyaniline powder having lithium salt doped is separated from the lithium salt solution.
Abstract:
PURPOSE: A dry polymer electrolyte membrane containing the capsulated electrolyte solution, its preparation method and a method for preparing a lithium polymer battery using the membrane are provided, to improve the ion conductivity and the mechanical properties of a polymer electrolyte by breaking a microcapsule physically to disperse the electrolyte solution inside the microcapsule into the dry polymer membrane. CONSTITUTION: The dry polymer electrolyte membrane(1A) comprises a supporter polymer; and an electrolyte storing means which is mixed with the supporter polymer and where an electrolyte solution is filled. Preferably the storing means is a capsule, and the electrolyte solution is an electrolyte solution containing a lithium salt. The preparation method of the electrolyte membrane comprises the steps of preparing the electrolyte storing means filled with an electrolyte solution; mixing an organic solvent with a supporter polymer to form the polymer slurry; distributing the storing means inside the polymer slurry; spreading the polymer slurry to form a storing means-dispersed polymer electrolyte; and volatilizing the organic solvent in the polymer electrolyte to prepare a dry polymer electrolyte membrane(1A).
Abstract:
본 발명은 리튬 고분자 전지에 관한 것으로 특히 고분자 전극을 이용한 리튬 2차전지에 관한 것이다. 종래에는 전도성고분자 중 폴리아닐린이 전도도를 가지게 하기 위해 양성자 산으로 도핑을 하는 방법을 이용하였다. 상기의 양성자 산에 의해 도핑한 폴리아닐린을 양전극으로 사용하여 리튬 2차전지를 구성하면 도핑된 양성자들이 전지 반응에 참여하여 전지에 좋지 않은 영향을 주어 전지의 성능 저하를 가져왔다. 따라서 본 발명에서는 양성자 산에 의한 도핑을 하지 않고 전지구성 시 사용하는 염이 녹아있는 전해질로 도핑을 한 전도성고분자를 양전극으로 사용하여 리튬 2차전지를 구성하면, 상기의 단점을 개선 할 수 있어 전지의 성능이 개선되며, 무기물 전극을 사용하였을 때 보다 전지의 모양도 자유롭고 무게도 가벼운 전지의 제작이 가능할 것이다.
Abstract:
본 발명은 리튬 고분자 전지에 있어서 양전극 물질과 음전극 물질 및 고분자 전해질을 기본 물질로하여 적층하거나 접는 방법을 이용하여 구성하는 전지의 제작에 있어서 양전극과 음전극의 탭을 손쉽게 부착하고 급속 충전 및 방전이 가능하게 하는 전극 탭 부착 방법에 관한 것이다. 종래의 리튬 고분자전지는 양전극 및 음전극의 한쪽 끝에 일자형으로 탭을 부착하기 때문에 공정이 복잡하고 탭의 형태도 전극 양쪽 종단에 고착되고 그 용착면적도 적어 기계적으로 약하며 전지의 급속 충방전에 약한 단점이 있다. 본 발명에서는 종래의 적층형 전지의 탭 공정 중 한쪽 끝에서 작은 면적만을 접촉 시켜 적층하는 기존의 탭 방법과는 달리 단위 전지와 단위 전지를 용량에 맞도록 먼저 적층한 후 전지의 탭 부착 위치인 금속 망 부분(집전체 부분)을 탭 금속으로 한바퀴 돌리고 접어 초음파 용착기를 사용하여 한번에 용착하여 탭을 만드는 방법을 제안한 것이며, 또한 이러한 방법은 접는 형태의 전지에서도 동일하게 적용할 수 있다. 이에따라 단위 셀과 단위 셀의 접촉 면적은 물론 전극과 탭의 접촉 면적을 넓게하므로 급속 충전 및 방전에도 효과적인 방법을 제안한 것이다.