Abstract:
PURPOSE: A manufacturing method of a lithiated electrode material is provided to manufacture an electrode material consisting of uniform particles having sizes of 500 or less, and having relatively excellent performance in low temperatures. CONSTITUTION: A manufacturing method of a lithiated electrode material using polyol process comprises a step of manufacturing polyol reactant composition by adding transition metal compound, dissolving a lithium-based compound into a polyol solvent; a step of raising temperature of the manufactured polyol reaction composition to 240-260°C; a step of maintaining the risen temperature of the reactant composition, and cooling the reactant composition to generate the lithiated electrode material.
Abstract:
본 발명은 폐기물 슬러지를 이용한 리튬 이차 전지용 음극 활물질과 그 제조방법 및 이를 이용한 리튬 이차 전지에 관한 것으로서, 더욱 상세하게는 하수, 오폐수 등의 오염수의 수처리 공정으로부터 발생되는 폐기물 슬러지로부터 회수된 산화티타늄 화합물을 음극 활물질로 이용하여 폐기되는 자원을 재활용할 수 있는 리튬 이차 전지용 음극 활물질과 그 제조방법 및 이를 이용한 리튬 이차 전지에 관한 것이다. 상기의 목적을 달성하기 위한 본 발명의 폐기물 슬러지를 이용한 리튬 이차 전지용 음극 활물질은 응집제로서 가수분해성 티타늄 화합물을 오염수에 투입하여 형성시킨 응집체를 티타늄(Ti) 공급원 물질로 하여 얻어진 산화티타늄 화합물을 포함하는 것을 특징으로 한다. 따라서 본 발명의 음극 활물질은 합성이 용이하며, 결정성이 우수하고 입자가 균일하여 초기방전용량이 높고 충방전의 횟수가 많더라도 방전용량이 크게 저하되지 않는 등 전기화학적으로 안정한 특성을 갖는다. 리튬, 리튬전지, 이차전지, 전극, 음극, 활물질, 이산화티타늄, 응집체
Abstract:
PURPOSE: A synthesis method of a nanoelectrode material, and the nanoelectrode material synthesized therefrom are provided to secure the excellent crystalline property of the material only by synthesizing at room temperature. CONSTITUTION: A synthesis method of a nanoelectrode material comprises the following steps: mixing a polyol solvent, a transition metal oxide, a polyacid anion-based compound, a lithium system compound, and a flammable liquid, to form a reaction solution; combusting the reaction solution; and collecting particles after combusting to obtain the nanoelectrode material.
Abstract:
본 발명은 전극재료에 관한 것으로, 보다 구체적으로는 산화법에 의해 제조된 비정질 형태의 리튬망간산화물을 출발 물질로 하여 단사정계결정구조 또는 다양한 상들이 동시에 존재하는 결정구조로 이루어진 리튬망간산화물 전극재료를 제조하는 방법, 그 방법으로 제조된 전극재료 및 상기 전극재료를 포함하는 2차전지에 관한 것이다.
Abstract:
PURPOSE: A graphene nano-sheet and a manufacturing method thereof are provided to synthesize the graphene nano-sheet only within several seconds to several minutes by using an ultra fast combustion method without an after treatment process and other addition processes. CONSTITUTION: A manufacturing method of a graphene nano-sheet comprises the following steps: a preparing step aims to prepare a reacting solution by mixing a graphite oxide, a polyol solvent, and a flammable liquid; a burning step aims to completely burn the reacting solution by lighting a fire after the reacting solution is poured and circulated on a bottom plate; and an yielding step aims to yield a residue which remains after burning completely in the bottom plate. The yielding step comprises a step of processing an obtained residue with an ultrasonic wave.
Abstract:
PURPOSE: A negative electrode active material for a rechargeable lithium ion battery using waste sludge is provided to ensure high discharge capacity and electrochemical stability by recycling waste sludge. CONSTITUTION: A negative electrode active material for a rechargeable lithium ion battery using waste sludge comprises the steps of: injecting a mucolytic titanium compound into contaminated water as a coagulant in contaminated water to produce an aggregate; and separating the aggregate from a supernatant; dehydrating the aggregate separating from the supernatant; and sintering the dehydrated aggregate.
Abstract:
A cathode material of a lithium secondary battery and a manufacturing method thereof are provided to realize high-capacity while suppressing transition to a spinel phase during several times cycle process through the partial substitution of transition metal having low valent metal in a LiM'M"O3 structure, or model metal. A method for manufacturing a cathode material of a lithium secondary battery comprises (S110) a step for obtaining a lithium precursor, M' precursor and M'' precursor by dissolving the lithium precursor, M' precursor and M'' precursor in distilled water respectively; (S120) a step for obtaining the M'M'' precursor solution by adding M'' precursor solution in M' precursor; (S130) a step for obtaining the lithium M'M'' precursor solution by adding the lithium precursor solution in the M'M'' precursor solution; (S140) a step for agitating the lithium M'M'' precursor solution; (S150) a step for obtaining parent powder by putting the agitated lithium M'M'' precursor solution in an oven, and evaporating water from the M'M'' precursor solution; (S160) a step for pulverizing the parent powder and to heating it to the first temperature in the atmosphere; (S170) a step for heating the parent powder at the second temperature higher than the first temperature and cooling it; and (S180) a step for obtaining a cathode material of a lithium secondary battery by washing the cooled parent powder with distilled water and drying the washed parent powder.
Abstract:
PURPOSE: A manufacturing method of a lithium manganese oxide electrode material is provided to manufacture a crystalline lithium manganese oxide electrode material using an amorphous lithium manganese oxide as a starting material. CONSTITUTION: A manufacturing method of a lithium manganese oxide electrode material comprises a step of obtaining a uniform mixture by mixing amorphous lithium manganese oxide; and a step of heat-treating the mixture under oxygen or air atmosphere. The molar ratio of lithium and manganese is 6:5-10:5, in the mixture. The mixing step comprises a dry ball-milling the amorphous lithium manganese oxide and lithium. The heat-treating step is conducted in a vacuum furnace at 400-900 deg. C for 8-20 hours.
Abstract translation:目的:提供一种锂锰氧化物电极材料的制造方法,以制造使用无定形锰酸锂作为原料的结晶锂锰氧化物电极材料。 构成:锂锰氧化物电极材料的制造方法包括通过混合无定形锰酸锂获得均匀混合物的步骤; 以及在氧气或空气气氛下对混合物进行热处理的步骤。 在混合物中锂和锰的摩尔比为6:5-10:5。 混合步骤包括无定形的锂锰氧化物和锂的干球磨。 热处理步骤在400-900度的真空炉中进行。 C 8-20小时。
Abstract:
PURPOSE: A manufacturing method of lithium-manganese oxide of excessive lithium and a secondary battery using thereof are provided to enhancing charge and discharge characters even in volume, variety, and velocity. CONSTITUTION: A manufacturing method of lithium-manganese oxide of excessive lithium is represented by chemical formula 1. The manufacturing method of lithium-manganese oxide of excessive lithium comprises the next steps: processing a reaction of lithium complex with lithium manganese based oxide which is represented by chemical formula 2 in reducing condition in order to synthesize lithium manganese based oxide; and synthesizing lithium manganese based oxide. The chemical formula 1 is same as follow: Li1+xMyMn2-yO4-zQz. The chemical formula 2 is same as follow: Li1+xMyMn2-x-yO4-zQ'z.
Abstract:
A cathode material of a lithium-ion battery and a manufacturing method thereof is provided to realize high-capacity while suppressing transition to a spinel phase by bonding oxygen through the partial substitution of transition metal having low valent metal in a LiM'M''O3 structure, or model metal. A method for manufacturing a cathode material of a lithium secondary battery comprises (S110) a step for manufacturing a lithium precursor, M' precursor and M'' precursor by dissolving the lithium precursor, M' precursor and M'' precursor in distilled water respectively; (S120) a step for manufacturing the M'M'' precursor solution by adding M'' precursor solution in M' precursor; (S130) a step for manufacturing the lithium M'M'' precursor solution by adding the lithium precursor solution in the M'M'' precursor solution; (S140) a step for agitating the lithium M'M'' precursor solution; (S150) a step for obtaining parent powder by putting the agitated lithium M'M'' precursor solution in an oven, and evaporating water from the M'M'' precursor solution; (S160) a step for pulverizing the parent powder and to heating it to the first temperature in the atmosphere; (S170) a step for heating the parent powder at the second temperature higher than the first temperature and cooling it; and (S180) a step for obtaining a cathode material of a lithium secondary battery by washing the cooled parent powder with distilled water and drying the washed parent powder.