Abstract:
본 발명은 폴리올용매를 이용한 리튬화된 전극재료 및 그 제조 방법에 관한 것으로, 보다 구체적으로는 반응물인 전이금속화합물 및 리튬계화합물을 일정 화학양론비를 고려한 전구체 용액을 먼저 제조한 후 폴리올용매에 첨가하여 리튬화된 전극재료를 제조하던 종래 방법과는 달리 전구체용액을 제조하지 않고도 상당히 저온에서 특정한 폴리올용매, 전이금속화합물, 리튬계화합물을 이용하여 제조할 수 있는 리튬화된 전극재료 제조방법, 그 방법으로 제조된 리튬화된 전극재료 및 그 전극재료를 포함하는 2차전지에 관한 것이다.
Abstract:
본 발명은 리튬 이차전지용 음극활물질 복합체 및 이를 이용한 리튬 이차전지 제조 방법에 관한 것으로서, 더욱 상세하게는 리튬 이차전지용 음극활물질에서의 비가역 방전용량 문제를 해결할 수 있도록 한 리튬 이차전지용 음극활물질 복합체 및 이를 이용한 리튬 이차전지 제조 방법에 관한 것이다. 즉, 본 발명은 기존 비가역 방전용량이 심한 음극활물질(흑연계, 실리콘계, 합금계, 산화물계, 인산화물, 칼코젠나이드 화합물 등)과 리튬이온에 대한 이온전도성이 우수한 질화리튬(Li 3 N)에 전기전도성을 부여하기 위하여 전이금속원자(M: Co, Ni, Ti, Mn, Cr, Fe, Cu, Zn, V 등)를 첨가한 질화전이금속리튬 화합물(Li 3-x M x N : M = Co, Ni, Ti, Mn, Cr, Fe, Cu, Zn, V)을 적절한 비율로 혼합(blending)하여, 리튬 이차전지용 음극활물질에서 발생하는 비가역 방전용량 문제점을 해결하고자 한 리튬 이차전지용 음극활물질 복합체 및 이를 이용한 리튬 이차전지 제조 방법을 제공하고자 한 것이다. 리튬, 이차전지, 음극활물질, 양극, 전해질, 질화리튬, 전이금속원자, 질화 전이금속 리튬 화합물, 인산화물
Abstract:
본 발명은 스피넬 결정구조를 가지는 하기 화학식 1의 리튬 망간계 산화물을 제조하는 방법으로서, 환원 분위기에서 하기 화학식 2의 리튬 망간계 산화물과 리튬 화합물을 반응시켜 화학식 1의 리튬 망간계 산화물의 제조 방법을 제공한다. Li 1 + x M y Mn 2 - y O 4 - z Q z (1) Li 1 +x' M' y' Mn 2- x' - y' O 4 - z' Q' z' (2) 상기 식에서, x, x', y, y', z, z', M, M', Q 및 Q'은 명세서에 정의되어 있는 바와 같다. 본 발명에 따른 스피넬 결정구조를 가지는 리튬 망간계 산화물은 과잉의 리튬을 포함하고 있으며, 그에 따라 3V 영역에서 용량 및 사이클 특성도 우수하다.
Abstract:
PURPOSE: A manufacturing method of a lithiated electrode material is provided to manufacture an electrode material consisting of uniform particles having sizes of 500 or less, and having relatively excellent performance in low temperatures. CONSTITUTION: A manufacturing method of a lithiated electrode material using polyol process comprises a step of manufacturing polyol reactant composition by adding transition metal compound, dissolving a lithium-based compound into a polyol solvent; a step of raising temperature of the manufactured polyol reaction composition to 240-260°C; a step of maintaining the risen temperature of the reactant composition, and cooling the reactant composition to generate the lithiated electrode material.
Abstract:
PURPOSE: A process for manufacturing a negative electrode material with high capability for a lithium secondary battery is provided to obtain Li4Ti5O12 nanoparticles without separate heat treatment using a solvent heat sythesis method. CONSTITUTION: A process for manufacturing a negative electrode material including Li4Ti5O12 as a transition metal oxide having a nanocrystalline structure comprises the steps of: preparing a mixed solution in which a titanium-based compound and a lithium-based compound solution in a polyol solvent; performing the reaction of the mixed solution in a container in which Teflon is lined at a constant temperature; and cooling the resultant at room temperature, washing the lithium titanium oxide precipitate, filtering the washed material, and drying the filtered materil.
Abstract translation:目的:提供一种用于锂二次电池的高性能负极材料的制造方法,以获得Li4Ti5O12纳米粒子,而不用使用溶剂热合成法进行单独的热处理。 构成:包括具有纳米晶体结构的过渡金属氧化物的Li 4 Ti 5 O 12负极材料的制造方法包括以下步骤:制备其中在多元醇溶剂中钛基化合物和锂基化合物溶液的混合溶液; 将混合溶液在恒温下排列在特氟隆的容器中进行反应; 并在室温下冷却,洗涤锂二氧化钛沉淀物,过滤洗过的物料,并干燥过滤的物质。
Abstract:
PURPOSE: A manufacturing method of lithium-manganese oxide of excessive lithium and a secondary battery using thereof are provided to enhancing charge and discharge characters even in volume, variety, and velocity. CONSTITUTION: A manufacturing method of lithium-manganese oxide of excessive lithium is represented by chemical formula 1. The manufacturing method of lithium-manganese oxide of excessive lithium comprises the next steps: processing a reaction of lithium complex with lithium manganese based oxide which is represented by chemical formula 2 in reducing condition in order to synthesize lithium manganese based oxide; and synthesizing lithium manganese based oxide. The chemical formula 1 is same as follow: Li1+xMyMn2-yO4-zQz. The chemical formula 2 is same as follow: Li1+xMyMn2-x-yO4-zQ'z.
Abstract:
본 발명은 충방전이 가능한 리튬 이차전지용 고용량 음극소재 및 그 제조 방법에 관한 것으로서, 용매열 합성법을 이용하여 리튬 이차전지용 음극 활물질로 각광받고 있는 제로 스트레인 인서트 물질(zero-strain insertion material) 인 Li 4 Ti 5 O 12 전극재료를 용이하게 합성함으로써, 기존의 폴리올 또는 고상법을 이용한 합성 방법에 비하여 우수한 결정성 및 고율 특성을 발현하는 Li 4 Ti 5 O 12 나노입자를 얻을 수 있도록 한 급속 충방전이 가능한 리튬 이차전지용 고용량 음극소재 및 그 제조 방법을 제공하고자 한 것이다. 리튬 이차전지, 음극소재, 용매열 합성법, 전극재료, 충방전, 나노입자, 고율 특성
Abstract:
PURPOSE: A process for manufacturing a negative electrode material for a lithium secondary battery is provided to manufacture various phosphate-based negative electrode materials without thermal process of high temperature and to reduce the time required for whole process. CONSTITUTION: A process for manufacturing a negative electrode material for a lithium secondary battery includes the steps of: mixing transition metal compounds dissolved in distilled water with poly acid phosphate-based compounds to prepare a mixed solution; stirring the mixed solution to prepare a precipitate by a co-precipitation method; drying the precipitate to a temperature of 50-80 °C; and heat-treating the dried material at a temperature of 300-500 °C.
Abstract:
PURPOSE: A negative active material composite for a lithium rechargeable battery is provided to prevent the generation of severe irreversible discharge capacity in initial charge-discharging, thereby preventing the degradation of capacity and performance of the lithium rechargeable battery. CONSTITUTION: A negative active material composite for a lithium rechargeable battery is formed by mixing a nitrate transition metal lithium compound into a negative active material with severe irreversible discharge capacity in a proper ratio, wherein the nitrate transition metal lithium compound is formed by adding transition metal atom for imparting electroconductivity to lithium nitride(Li3N). The negative active material composite for a lithium rechargeable battery is configured to reduce an initial irreversible generation capacity.