Abstract:
Systems and methods for authenticating material samples are provided. Characteristic features are measured for a batch of material samples that comprise substantially the same composition and are produced by substantially the same process. The measured characteristic features have respective variability that is analyzed to extract statistical parameters. In some cases, reference ranges are determined based on the extracted statistical parameters for the batch of material samples. The corresponding statistical parameters of a test material sample are compared to the reference ranges to verify whether the test material sample is authentic.
Abstract:
A method of evaluating a plurality of patient protocols associated with a medical context, the method including, with a computer system, accessing a database including medical information for a plurality of patients associated with the medical context items. For each of the patients, the medical information includes an indication that one of the patient protocols is associated with the patient. The method further includes, with the computer system, evaluating each of the patient protocols based on medical information associated with patients within a patient population, the patient population representing a subset of the patients, to estimate an efficacy of each of the patient protocols for the patient population, and identifying the patient population represents a low-efficacy patient population based on the efficacy estimates for the patient population. The method further includes storing, within the database, an indication that the patient population represents the low-efficacy patient population.
Abstract:
A computer-implemented method of evaluating a plurality of protocols associated with a medical context includes receiving, with a computer system, an indication of a medical context item corresponding to a medical context, accessing, with the computer system, a digital library including a plurality of protocols associated with the medical context, assigning, with the computer system, predictive outcomes to one or more of plurality of protocols, selecting, with the computer system, one of the plurality of protocols associated with the medical context based upon the assigned predictive outcomes, and storing, with the computer system within a database, an indication the selected protocol is assigned to the medical context item.
Abstract:
At least some aspects of the present disclosure feature systems and methods for obfuscating data. The method includes the steps of: receiving or retrieve an input data stream comprising a sequence of n-grams; mapping at least some of the sequence of n-grams to corresponding tokens using an obfuscation table; disposing the corresponding tokens to an output data stream.
Abstract:
The disclosure describes systems of navigating a hazardous environment. The system includes personal protective equipment (PPE) and computing device(s) configured to process sensor data from the PPE, generate pose data of an agent based on the processed sensor data, and track the pose data as the agent moves through the hazardous environment. The PPE may include an inertial measurement device to generate inertial data and a radar device to generate radar data for detecting a presence or arrangement of objects in a visually obscured environment. The PPE may include a thermal image capture device to generate thermal image data for detecting and classifying thermal features of the hazardous environment. The PPE may include one or more sensors to detect a fiducial marker in a visually obscured environment for identifying features in the visually obscured environment. In these ways, the systems may more safely navigate the agent through the hazardous environment.
Abstract:
This disclosure describes a computer-implemented method and system for evaluating, modifying, and determining setups for orthodontic treatment using metrics computed during virtual articulation. The virtual articulation techniques of this disclosure may further be combined with techniques for determining dynamic collision metrics, determining a comfort measurement, determining treatment efficacy, and/or determining dental conditions, such as bruxism. The techniques of this disclosure further include user interface techniques that provide an orthodontist/dentist/technician with information regarding various treatment plans based on metrics gathered during virtual articulation.
Abstract:
Computer-implemented systems and methods for estimating a replacement status of an HVAC air filter. Outdoor weather data (e.g., outdoor temperature information), is obtained. A Total Runtime Value of the HVAC system is determined based upon the obtained outdoor weather data. Finally, a replacement status of the air filter is estimated as a function of a comparison of the Total Runtime Value with a Baseline Value. By correlating air filter replacement status with an estimated runtime of the HVAC system, a credible predictor of air filter usage is provided. By estimating fan runtime based on easily-obtained outdoor weather data, the methods are readily implemented with any existing HVAC system and do not require installation of sensors or other mechanical or electrical components to the HVAC system.