Abstract:
A curable composition includes a polyamide composition that includes a first polyamide. The first polyamide includes a tertiary amide in the backbone thereof and is amine terminated. The curable composition further includes an amino functional compound comprising from 2 to 20 carbon atoms, a multifunctional (meth)acrylate, an epoxy resin, and an inorganic filler. The inorganic filler is present an amount of at least 25 wt. %, based on the total weight of the curable composition.
Abstract:
The invention relates to a method for preparing a pipe for a continuous spray lining process, the method comprising the following steps: providing an inflatable packer (3); providing an expandable sleeve (4) with a conformable backing layer (5) and an adhesive layer (6); wrapping the expandable sleeve around the packer with the adhesive layer facing the outside; inflating the inflatable packer until it reaches a first diameter (D1), wherein the first diameter is smaller than the inner diameter (d) of the pipe section, thereby expanding the stretching sleeve, inserting the inflated packer with the expanded sleeve into the pipe (1, 2) until it reaches the pipe section to be sealed; and further inflating the packer until it reaches a second diameter (D2), thereby further stretching the expandable sleeve; wherein the second diameter is reached when the expanded sleeve touches the inner diameter (d) of the pipe section.
Abstract:
Articles are provided, having a multilayer structure including (a) a first layer formed from polyolefin and including undercut features formed on and extending from an integral backing; (b) a second layer including an adhesive having a Shore D hardness of greater than 59 when cured; and (c) a third layer including a substrate. The second layer is interlocked with the undercut features, the third layer is adhered to the adhesive, and the second layer is disposed between the first layer and the third layer. A method is also provided including (a) depositing a polyolefin resin into a mold cavity to form a first layer including undercut features; (b) demolding the first layer from the mold cavity at a rate of at least 150 millimeters per minute; (c) applying a curable adhesive to the undercut features to form a second layer attached to the first layer; and (d) attaching a third layer including a substrate to the second layer.
Abstract:
(Co)polymer matrix composites including a porous (co)polymeric network; a multiplicity of thermally-conductive particles and a multiplicity of magnetic particles distributed within the (co)polymeric network structure; wherein the thermally-conductive particles, magnetic particles and optional magnetic particles are present in a range from 15 to 99 weight percent, based on the total weight of the particles and the (co)polymer (excluding the solvent). Methods of making and using the (co)polymer matrix composites are also disclosed. The (co)polymer matrix composites are useful, for example, as heat dissipating or heat absorbing thermal interface materials that also provide magnetic properties useful, for example, in flux field directional materials or shielding from electromagnetic interference.
Abstract:
A thermally conductive dielectric film includes a thermoplastic layer including polyester segments and 5 to 30% by wt polyether amide segments. The thermally conductive dielectric film has a thickness of less than 100 micrometers.
Abstract:
Crowd funding for innovation includes distributing a proposal with a description of a project idea, an amount of funds requested, and a time frame for raising the funds. Ownership of the project is transferred to an entity, which receives contributions from contributors and for each of the received contributions converts the contribution to a corresponding amount of virtual coin and adds the contribution to the funds. If the funding goal is complete within the time frame, the entity converts the coins to actual money and releases the money to the requestor. After completion of the project, the entity determines if the project is successful and can commercialize successful projects. For certain successful projects, the entity can also distribute funds to the contributors.
Abstract:
Crowd funding for innovation includes distributing a proposal with a description of a project idea, an amount of funds requested, and a time frame for raising the funds. Ownership of the project is transferred to an entity, which receives contributions from contributors and for each of the received contributions converts the contribution to a corresponding amount of virtual coin and adds the contribution to the funds. If the funding goal is complete within the time frame, the entity converts the coins to actual money and releases the money to the requestor. After completion of the project, the entity determines if the project is successful and can commercialize successful projects. For certain successful projects, the entity can also distribute the back funds to the contributors.
Abstract:
The present invention generally relates to curable compositions that include a benzoxazine resin and a polyamide resin, wherein the polyamide resin is a reaction product of (i) a dicarboxylic acid, wherein the dicarboxylic acid includes a non-aromatic, dicarboxylic dimer acid and the mole fraction of the non-aromatic, dicarboxylic dimer acid is between from 0.10 to 1.00, based on the total moles of dicarboxylic acid used to form the polyamide resin; and (ii) a diamine; and wherein the polyamide resin is amine terminated and includes amine end-groups. The curable compositions may be used to produce an article comprising a cured composition wherein the cured composition is the reaction product of the curable composition according to any one of the curable compositions of the present disclosure. The present invention also relates to methods of coating substrates using the curable compositions of the present disclosure.
Abstract:
Monolithic gravity-laid inorganic fiber webs that are greater than about 5 cm in thickness are disclosed. Methods of making and using such webs are also disclosed. The gravity-laying process comprises mechanically separating inorganic fibers and collecting the fibers as a monolithic thick web, and may comprise blending of multiple types of inorganic fibers and/or blending of inorganic particulate additives with the fibers.
Abstract:
Curable compositions comprising a benzoxazine component, a polyamine component and an ortho-dihydroxyaryl component are described. The compositions may be cured to produce compositions useful in coating, sealants, adhesive and many other applications.