Abstract:
The present invention is directed to articles, such as retroreflective sheeting articles that comprise a release coating. Also described are release coatings and hydrophilic components suitable for use in release coatings. The release coatings comprise a polyorganosiloxane polymer and at least 10 or 15 wt-% of hydrophilic units.
Abstract:
The disclosed retroreflective element includes a polymeric core that is loaded with a plurality of first beads and second beads distributed at the perimeter of the core. The first beads are different than the second beads. Because of the beads in the core, the retroreflective element remains useful for returning light even after portions of the core begins to wear away. Further, when the retroreflective elements get wet, water will settle to the bottom of the perimeter of the core. Therefore, using the second beads with a refractive index suited for wet conditions, while the first beads have a refractive index suited for dry conditions allows the retroreflective element to be useful in both wet and dry conditions even while the retroreflective element wears during use.
Abstract:
The disclosed retroreflective element includes a polymeric core that is loaded with a plurality of first beads and second beads distributed at the perimeter of the core. The first beads are different than the second beads. Because of the beads in the core, the retroreflective element remains useful for returning light even after portions of the core begins to wear away. Further, when the retroreflective elements get wet, water will settle to the bottom of the perimeter of the core. Therefore, using the second beads with a refractive index suited for wet conditions, while the first beads have a refractive index suited for dry conditions allows the retroreflective element to be useful in both wet and dry conditions even while the retroreflective element wears during use.
Abstract:
The disclosed retroreflective element includes a highly durable core with an ionic copolymer and a plurality of beads. These disclosed retroreflective properties remain intact even after continued application of external forces and stresses. Further, the ionic copolymer allows for beads to be loaded into the ionic copolymer of the core, securely disposed around the perimeter of the core, or both.