Abstract:
A recycling optical cavity is defined at least by first and second optical films and is configured to receive a test material therein. The test material is configured to emit at least a second light having a second wavelength when irradiated with a first light having a first wavelength. For at least one of s- and p-polarized incident lights incident in an incident plane, and at the first and second wavelengths: at a first incident angle, the first optical film has respective optical transmittances T11(θ1) and T12(θ1), and the second optical film has respective optical transmittances T21(θ1) and T22(θ1), wherein T11(θ1)>T12(θ1), T21(θ1), T22(θ1); and at a second incident angle, the first optical film has respective optical transmittances T11(θ2) and T12(θ2), and the second optical film has respective optical transmittances T21(θ2) and T22(θ2), wherein T21(θ2)>T11(θ2), T12(θ2), T22(θ2).
Abstract:
Nonwoven articles for detecting microorganisms or cellular analytes in a fluid sample are provided. The nonwoven article includes a fibrous porous matrix and concentration agent particles enmeshed in the fibrous porous matrix. The fibrous porous matrix generally consists of inorganic fibers and polymeric fibers. Methods of detecting microorganisms or cellular analytes in a fluid sample are also provided. The method includes providing the nonwoven article, providing a fluid sample suspected of containing at least one microorganism strain or target cellular analyte, contacting the fluid sample with the nonwoven article such that at least a portion of the at least one microorganism strain or target cellular analyte is bound to the nonwoven article, and detecting the presence of bound microorganism strain(s) or bound cellular analyte(s).
Abstract:
Method for detecting an analyte of interest in a sample. The method can include providing a container comprising a microstructured surface, and centrifuging the container toward the microstructured surface to form a sediment and a supernatant of the sample. Following centrifugation, the container can be inverted to decant at least a portion of the supernatant of the sample from the second portion, such that a concentrate (e.g., comprising the sediment) of the sample is retained in the microstructured surface. The concentrate can then be interrogated in the microstructured surface for the analyte of interest. In some embodiments, at least a portion of the second portion can be substantially transparent, such that the concentrate can be interrogated from the outside of the container, without requiring that the container be opened prior to interrogation.
Abstract:
In some examples, a system for detecting inhibition of a biological assay includes a detection device configured to amplify and detect a target nucleic acid. The detection device is configured to receive a sample comprising a matrix and a quantity of the target nucleic acid and to amplify the target nucleic acid within the sample over a nucleic acid amplification cycle. The detection device is configured to capture a data set including measurements of the nucleic acid collected during the amplification cycle. The system further includes a computing device configured to receive the data set and to apply a machine-learning system to the data set to detect inhibited biological assays that tested negative for the target nucleic acid due to matrix inhibition.
Abstract:
Pressure sensitive adhesive articles include a substrate, and a layer of pressure sensitive adhesive in contact with the substrate. The pressure sensitive adhesive layer includes a pressure sensitive adhesive matrix, and at least one active enzyme dispersed within the pressure sensitive adhesive matrix. The active enzyme remains active for extended periods of time.
Abstract:
A method of filtering a liquid sample that includes passing a sample comprising at least one biological organism through a filter membrane at a passive water volume flux of at least 10 L/m2·h·psi, wherein the filter membrane comprises a Bubble Point pore size of no more than 1.0 μm, thereby retaining at least one biological organism on the surface of the membrane; and detecting the at least one biological organism retained on the surface of the filter membrane.
Abstract:
The present invention generally relates to curable compositions that include a benzoxazine resin and a polyamide resin, wherein the polyamide resin is a reaction product of (i) a dicarboxylic acid, wherein the dicarboxylic acid includes a non-aromatic, dicarboxylic dimer acid and the mole fraction of the non-aromatic, dicarboxylic dimer acid is between from 0.10 to 1.00, based on the total moles of dicarboxylic acid used to form the polyamide resin; and (ii) a diamine; and wherein the polyamide resin is amine terminated and includes amine end-groups. The curable compositions may be used to produce an article comprising a cured composition wherein the cured composition is the reaction product of the curable composition according to any one of the curable compositions of the present disclosure. The present invention also relates to methods of coating substrates using the curable compositions of the present disclosure.
Abstract:
Method for detecting an analyte of interest in a sample. The method can include providing a container including a microstructured surface, and centrifuging the container toward the microstructured surface to form a sediment and a supernatant of the sample. Following centrifugation, the container can be inverted to decant at least a portion of the supernatant of the sample from the second portion, such that a concentrate (e.g., including the sediment) of the sample is retained in the microstructured surface. The concentrate can then be interrogated in the microstructured surface for the analyte of interest. In some embodiments, at least a portion of the second portion can be substantially transparent, such that the concentrate can be interrogated from the outside of the container, without requiring that the container be opened prior to interrogation.
Abstract:
Systems and methods for detecting an analyte of interest in a sample. The system can include a first container comprising a filter portion. The filter portion can include a filter comprising a filtrand of the sample on a first side of the filter. The system can further include a second container comprising the filter portion coupled to a detection portion comprising a microstructured surface. The method can include providing the first container, coupling the filter portion to the detection portion to form the second container where the first side of the filter faces the microstructured surface, and centrifuging the second container toward the microstructured surface. The method can further include inverting the second container after centrifuging to decant the supernatant from the detection portion, such that a concentrate comprising a sediment of the sample is retained in the microstructured surface, which can be interrogated for an analyte of interest.