Abstract:
A fluoropolymer coating composition is described comprising an aqueous liquid medium, fluoropolymer particles dispersed in the aqueous liquid medium, and at least one aziridine compound. The aziridine compound comprises at least two aziridine groups (i.e. polyaziridine) or at least one aziridine group and at least one alkoxy silane group.In another embodiment, an article is described comprising a substrate wherein a surface of the substrate comprises a coating comprising fluoropolymer particles; and a reaction product of at least one aziridine compound comprising at least two aziridine groups or at least one aziridine group and at least one alkoxy silane group. The coating can be utilized as a primer for bonding a non-fluorinated substrate to a fluoropolymer film and/or the coating can be used as an (e.g. outer exposed) surface layer. In some embodiments, the article may be the (e.g. backside) film of a photovoltaic module.
Abstract:
Presently described are methods of making coating comprising aqueous fluoropolymer latex dispersions, aqueous fluoropolymer coating compositions, coated substrates, and (e.g. backside) films of photovoltaic cells. In one embodiment, the film comprises at least one fluoropolymer comprising repeat units derived from VF, VDF, or a combination thereof; inorganic oxide nanoparticles; and a compound that reacts with the repeat units derived from VF and VDF to crosslink the fluoropolymer and/or couple the fluoropolymer to the inorganic oxide nanoparticles. In another embodiment, the backside film comprises at least one fluoropolymer comprising repeat units derived from VF, VDF, or a combination thereof; and an amino-substituted organosilane ester or ester equivalent crosslinking compound.
Abstract:
A fluoropolymer coating composition is described comprising an aqueous liquid medium, fluoropolymer particles dispersed in the aqueous liquid medium, and at least one aziridine compound. The aziridine compound comprises at least two aziridine groups (i.e. polyaziridine) or at least one aziridine group and at least one alkoxy silane group.In another embodiment, an article is described comprising a substrate wherein a surface of the substrate comprises a coating comprising fluoropolymer particles; and a reaction product of at least one aziridine compound comprising at least two aziridine groups or at least one aziridine group and at least one alkoxy silane group. The coating can be utilized as a primer for bonding a non-fluorinated substrate to a fluoropolymer film and/or the coating can be used as an (e.g. outer exposed) surface layer. In some embodiments, the article may be the (e.g. backside) film of a photovoltaic module.
Abstract:
The present invention provides an anti-corrosion solution comprising reaction products of the following reaction components: 1-30 wt % of a tetraalkyl orthosilicate, with the total weight of said anti-corrosion solution being 100 wt %; 0.2-6.0 wt % of a metal salt, with the total weight of said anti-corrosion solution being 100 wt %, said metal salt comprising one or more selected from the group consisting of: an aluminum salt, a strontium salt, a chromium salt, a zirconium salt and a cerium salt; an acid; 3-90 wt % of water, with the total weight of said anti-corrosion solution being 100 wt %; 4-95 wt % of an alcohol, with the total weight of said anti-corrosion solution being 100 wt %; said anti-corrosion solution having a pH value less than or equal to 4. The anti-corrosion solution provided by the present invention can form a dense transparent anti-corrosion coating layer on a substrate surface, the anti-corrosion coating layer having a good corrosion resistance performance.
Abstract:
A composition having pH of 5 or less comprises composite particles dispersed in an aqueous continuous liquid phase. Each composite particle comprises a polymer core surrounded by a silicaceous shell. From 3 to 50 percent of silicon atoms in the silicaceous shells are bonded to respective organic groups via a silicon-carbon covalent bond. The weight ratio of the total amount of the silica in the composition to the total amount of the at least one polymer is from 0.1 to 19. The composition is useful for making various articles. A method for making the composition is also disclosed. Silicaceous particles dispersed in an aqueous phase, wherein from 3 to 50 percent of silicon atoms in the silicaceous particles are bonded to organic groups via a silicon-carbon covalent bond are also disclosed.
Abstract:
Provided is a coated article comprising a substrate and a dried coating which comprises a first set of spherical silica nanoparticles having an average diameter of less than 20 nm and a second set of spherical silica nanoparticles having an average diameter of 20 nm to 120 nm. The alkoxy silane compound comprises an epoxy functional group or a carboxylic acid functional group. Also provided is a coating composition comprising an acidic aqueous dispersion which comprises the described first and second set of spherical silica nanoparticles and silane compound.
Abstract:
A fluoropolymer coating composition comprises: fluorinated homopolymer particles dispersed in water, fluorinated copolymer particles dispersed in water, non-fluorinated polymer particles dispersed in water; and at least one aziridine compound comprising at least two aziridine groups. The composition is especially useful in low friction coating for telecommunication cables.
Abstract:
A fluoropolymer coating composition comprises: fluorinated homopolymer particles dispersed in water, fluorinated copolymer particles dispersed in water, non-fluorinated polymer particles dispersed in water; and at least one aziridine compound comprising at least two aziridine groups. The composition is especially useful in low friction coating for telecommunication cables.
Abstract:
Presently described are methods of making coating comprising aqueous fluoropolymer latex dispersions, aqueous fluoropolymer coating compositions, coated substrates, and (e.g. backside) films of photovoltaic cells. In one embodiment, the film comprises at least one fluoropolymer comprising repeat units derived from VF, VDF, or a combination thereof; inorganic oxide nanoparticles; and a compound that reacts with the repeat units derived from VF and VDF to crosslink the fluoropolymer and/or couple the fluoropolymer to the inorganic oxide nanoparticles. In another embodiment, the backside film comprises at least one fluoropolymer comprising repeat units derived from VF, VDF, or a combination thereof; and an amino-substituted organosilane ester or ester equivalent crosslinking compound.
Abstract:
The present invention relates to a sealing strip, a respirator, and a method for manufacturing a sealing strip. The sealing strip includes a main body part, the main body part having an upper surface, a lower surface, a first side surface, and a second side surface opposite to the first side surface. The main body part includes a curved surface part. The curved surface part includes a first convex part and a second convex part, and the first convex part and the second convex part are connected to each other in the lengthwise direction of the sealing strip to define a concave part located therebetween. The concave part is configured to accommodate the nose of a wearer. The first convex part and the second convex part are symmetrical about the concave part. A first side surface of the curved surface part is a sinusoidal curved surface with a constant amplitude extending in the lengthwise direction of the sealing strip. By the sealing strip, the respirator and the method for manufacturing a sealing strip according to the present invention, a manufacturing process of the sealing strip can be simplified; a maximum utilization rate of materials can be achieved; sealing between the respirator and the face of the wearer can be improved, and the wearing comfort of the respirator can be increased.