-
公开(公告)号:US10378353B2
公开(公告)日:2019-08-13
申请号:US15581786
申请日:2017-04-28
Applicant: ABB Schweiz AG
Inventor: Jianjun Wang , Carlos Martinez , Carlos Morato , Biao Zhang , Thomas Fuhlbrigge , Will Eakins , Sang Choi , Daniel Lasko , Jan Nyqvist , Remus Boca
Abstract: In one embodiment, the present disclosure provides a robot automated mining method. In one embodiment, a method includes a robot positioning a charging component for entry into a drill hole. In one embodiment, a method includes a robot moving a charging component within a drill hole. In one embodiment, a method includes a robot filling a drill hole with explosive material. In one embodiment, a method includes operating a robot within a mining environment.
-
公开(公告)号:US20180154995A1
公开(公告)日:2018-06-07
申请号:US15834396
申请日:2017-12-07
Applicant: ABB Schweiz AG
Inventor: Gregory Cole , William Eakins , Daniel Lasko , Harshang Shah , Thomas Fuhlbrigge , Biao Zhang , Sanguen Choi , Luiz Cheim , Poorvi Patel , Andrew Salm
CPC classification number: B63G8/22 , B63G8/001 , B63G2008/005
Abstract: A submersible inspection drone used for inspection can include a ballast system used to control depth of the submersible inspection drone. The submersible can be configured to communicate to a base station using a wireless transmitter and receiver. The ballast system can include a pressure vessel for storing fluid and a bag for inflating and deflating as it receives a fluid. Buoyancy of the submersible inspection drone can be provided by change in density of the pressure vessel as a compressible gas is expanded when the ballast bag is caused to inflate or deflate. A pump can be used to draw fluid from the ballast bag and store the fluid in the pressure vessel. In one form the pressure vessel can include a compressible fluid and an incompressible fluid, where the incompressible fluid is used to inflate and deflate the bag.
-