Abstract:
The load break switch (1) comprises a housing (2) defining a housing volume for holding an insulation gas; a movable contact (20) and a fixed contact (10) arranged within the housing volume, the movable contact (20) being movable in relation to the fixed contact (10) along an arcuate trajectory (A) of movement and defining an arcing region (52) in which an arc is formed during an opening operation of the switch (1); a pressurizing system (40, 41), actuated by a movement of the movable contact (20) during opening of the switch (1), for pressurizing the insulation gas; a nozzle (30), the nozzle being arranged within the housing volume and being fixed to the movable contact (20) and/or defining a contacting part (20, 24) of the movable contact (20), wherein the nozzle (30) is adapted to blow the pressurized insulation gas into the arcing region (52) substantially tangentially to the arcuate trajectory (A).
Abstract:
A gas-insulated low- or medium-voltage load break switch includes: a housing defining a housing volume for holding an insulation gas at an ambient pressure; a first arcing contact and a second arcing contact arranged within the housing volume, the first and second arcing contacts being movable in relation to each other along an axis of the load break switch and defining a quenching region in which an arc is formed during a current breaking operation; a pressurizing system having a pressurizing chamber arranged within the housing volume for pressurizing a quenching gas from an ambient pressure p0 to a quenching pressure pquench during the current breaking operation; and a nozzle system arranged within the housing volume for blowing the pressurized quenching gas in a subsonic flow pattern from the pressurization chamber onto the arc formed in the quenching region during the current breaking operation. The nozzle system includes at least one nozzle arranged for blowing the quenching gas from an off-axis position predominantly radially inwardly onto the quenching region.
Abstract:
Gas-insulated high voltage puffer breaker comprising a puffer unit with a movable piston running in a puffer cylinder and delimiting a puffer volume. A piston and a first contact member are attached to a piston stem. A piston and a first contact member are attached to a piston stem. An electric arc is extinguishable in an arcing zone when the first contact member moves from a first position to a second position. The puffer volume is fluidly connected to a gas nozzle by a gas channel such that the puffer volume comprises the gas channel as well as a portion of the puffer cylinder. The gas channel is provided radially outside of the puffer cylinder between a puffer cylinder wall delimiting the puffer cylinder and a wall structure of the puffer unit.
Abstract:
The present invention relates to a device for interrupting non-short circuit currents only, and in particular relates to a disconnector, more particularly high voltage disconnector, or to an earthing switch, more particularly make-proof earthing switch, and further relates to a low voltage circuit breaker. The device comprises at least two contacts movable in relation to each other between a closed state and an open state and defining an arcing region, in which an arc is generated during a current interrupting operation and in which an arc-quenching medium comprising an organofluorine compound is present. According to the application, a counter-arcing component is allocated to the arcing region, the counter-arcing component being designed for counteracting the generation of an arc and/or being designed for supporting the extinction of an arc.